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Abstract: 
We gave a mathematical formulation of the Riemann Hilbert problem . Our aimed was proceed to show scaler and the 

solution of scaler of Riemann-Hilbert problem arises in the theory. We followed the analytical mathematical method to 

solve some problems and we found that the solution of Scaler Riemann Hilbert problem depend to Holder condition, 

pemelj formula and Hardy spaces.   
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1.Introduction: 

In Mathematic, Riemann–Hilbert problems, named after a Riemann and Hilbert are a class of problems that arise in the 

study of differential equation in the complex plan. Several existence Theorem for Riemann–Hilbert problems have Holder 

condition produced. the problem is closely related to Riemann’s idea that any    function is completely determined by 

specifying its singularities and behave our round these singularities, it got the name Riemann-Hilbert problem. the 

Riemann-Hilbert method was developed. For an overview of these development the solution is given by exact formulae, 

its structure is not elementary.[10], p1 

 

2.The Cauchy Integral Formula: 

Here we develop the general version of the Cauchy integral formula valid for arbitrary closed rectifiable curves. The key 

idea in this development is the notion of the winding number. This is the number defined in the following theorem, also 

called the index. We make use of this winding number along with the earlier 

results, especially Liouville’s theorem, to give an extremely general Cauchy integral formula. 

Theorem (2.1): Let γ : [a, b] → C be continuous and have bounded variation with γ (a) = γ (b) . Also suppose that z /∈ γ 

([a, b]). We define 

                                         n (γ, z) ≡ 
𝟏

𝟐𝝅𝒊
∫γ 

𝒘

𝒘−𝒛 
𝒅𝒘.                        

Then n (γ, z) is continuous and integer valued. Furthermore, there exists a sequence, ηk : [a, b] → C such that ηk is C ([a, 

b]). [9]p426 

 

3.The Riemann-Hilbert problem: 

Riemann-Hilbert problems (RHP), named after the giant German mathematicians Bernhard Riemann and David Hilbert, 

are a class of models which can be used to solve certain differential equations with the assistance of complex analysis 

techniques such as analytical continuation. RHP can be presented in slightly 

different ways when treating different problem. Here we introduce only the most typical representation that is widely used 

in integrable systems.[2], p30 

Let γ ⊂ C be an oriented contour in the complex λ-plane. The orientation defines traditionally the  𝑫+, and  𝑫−, sides of 

γ as being on the left and right sides of the direction arrow, respectively. Let G be a map from γ into the set of N × N 

invertible matrices which we shall denote by GLN (C). 

An RHP associated with the pair (γ; G) consists in finding an N × N matrix-valued function Φ(λ) (λ ∈ C) characterized by  

• Φ(λ) is holomorphic in C\γ; 

•𝜱+(𝝀) = 𝑮(𝝀)𝜱−(𝝀)  for all λ ∈ γ, where 

                                𝜱+(𝝀) = 𝒍𝒊𝒎
𝝀′→𝝀,𝝀′∈𝑫+

𝜱(𝝀′),  and 𝜱−(𝝀)  =𝒍𝒊𝒎 𝜱(𝝀′),
𝝀′→𝝀,𝝀′∈𝑫−

(1) 

G(λ) involved here is often called the jump matrix in this model; more generally, 𝜱+(𝝀) and 𝜱−(𝝀)  can be defined as 

Φ(λ) restricted to λ ∈  𝑫+, and λ ∈  𝑫−, respectively (hence 𝜱+(𝝀)and 𝜱−(𝝀)  are holomorphic in  𝑫+ and  𝑫−, 

respectively; 

• Both 𝜱+(𝝀) and 𝜱−(𝝀)  approach the identity matrix as λ → ∞ (canonical normalization condition.[2], p31 

To solve the simplest scalar case N = 1, one can rewrite the original multiplicative jump condition into an additive form 

with the help of the logarithmic function 

                          log𝜱+(𝝀) = log𝜱−(𝝀)  + log G(λ),    (2) 

which can always be solved by using the Cauchy-Plemelj-Sokhotskii formula  

                  log Φ(λ) = 
𝟏

𝟐𝝅𝒊
∫ 

𝒍𝒐𝒈 𝑮(𝒛)

𝒛 − 𝝀 
 dz.                       (3)  

RHPs with N ≥ 1 can be solved also explicitly by (3), whenever the involved matrix multiplication for G is abelian, i.e 

when [G(𝝀𝟏), G(𝝀𝟐)] = G(𝝀𝟏)G(𝝀𝟐) − G(𝝀𝟐)G(𝝀𝟏) = 0 for all 𝝀𝟏, 𝝀𝟐 ∈ γ; that is 

                             Φ(λ) = exp Φ(λ) = 
𝟏

𝟐𝝅𝒊
∫∫  

∗

𝑳

𝒍𝒐𝒈 𝑮(𝒛)

𝒛 − 𝝀 
 dz.               (4) 

For a more general non-abelian matrix RHP, formula (3) or (4) unfortunately ceases to work–it is so far believed that in 

such cases the RHP cannot be solved in analytical form by means of contour integrals. 

the first part of this proposition involving uniform convergence, we obtain [13], p31 

                                             f (z) = 
𝟏

𝟐𝝅𝒊
∫  

∗

𝜸

𝒇 (𝒘)

𝒘−𝒛  
 dw.  (5)                      

 

Definition (3.1): Suppose that we are given a simple smooth closed 

contour L dividing the plane of the complex variable into an interior domain 

 and an exterior domain 𝑫−, and two functions of on the contour, G(t) and g(t) which satisfy the Holder condition, where 

G(t) does not vanish. It is 

required to find two functions: 𝜱+(z), analytic in the domain 𝑫+, and 𝜱−(𝒛),  
analytic in the domain𝑫−, including z = ∞, which satisfy on the contour L 

either the linear relation 

                                             𝜱+(𝒛) 𝑮(𝒕)𝜱−(𝒛)                   (6) 

or 

                     𝜱+(𝒛) 𝑮(𝒕)𝜱−(𝒛) + 𝒈(𝒕)                                        (7) 
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The function G(t) will be called the coefficient of the Riemann problem, and 

the function g(t) its free term Holder theory of Cauchy integrals the fundamental object of study in the theory of RH 

problems is the Cauchy integral.[2] p30 

The Cauchy integral maps functions on a contour to analytic functions off the contour. We shall see later that under specific 

regularity conditions these functions can be put into a one-to-one correspondence. In this way, Cauchy integrals are critical 

in the solution of RH problems from both a numerical and an analytical perspective.[1], p114 

As in the precise statement of an RH problem, we must understand the limiting values of (6), specifically issues related to 

existence and regularity. We describe a class of functions for which the Cauchy integral has nice properties 

 

Definition (3.2): Let a ∈ 𝑳∞ and 1 < p < ∞. The Riemann-Hilbert problem (RHP) in Hardy spaces is the problem of 

finding 𝝋, ψ ∈ 𝑯𝒑 (D) for which 

                                                               𝝋∗ = a𝝋∗̅̅̅̅          a on T                (8) 

where 𝝋∗ denotes the nontangential boundary values of𝝋 . The following well-known result essentially shows that the 

study of Toeplitz operators is closely related to the RHP in Hardy spaces.[13], p31 

 We give the proof for completeness because it is not readily available in the literature. Let us first recall. a couple of 

useful results. For f ∈ 𝑳𝟏   , define 

                                                  f(z) = 
𝟏

𝟐𝝅𝒊
∫

𝒇(𝝉 )

𝝉 − 𝒛 

∗

𝑳
 dτ, z∈c\ T                    (9) 

 Proposition (3.3): Let a ∈ 𝑳∞ and 1 < p < ∞. Then the Riemann-Hilbert problem  There fore the RHP (4)is equivalent 

to the following 

                                                                     𝝋∗ = a𝝋∗̅̅̅̅  

and the problem of finding f in ker 𝑻𝒂 are equivalent in Hpwhilst also being bounded at each of the endpoints. Hence this 

is the sought solution of the homogeneous Riemann-Hilbert problem, and we note that it is correct up to multiplication by 

an arbitrary polynomial. Once again though, whatever [4], p3polynomial we choose, we have 

                                   𝜱+(𝒕)𝒀(𝒕)𝜱−(𝒛)                                (10)                    

                        𝒀+(𝒕) 𝑮(𝒕)𝜱−(𝒛) + 𝒈(𝒕)                                                (11) 

where 

              𝒀±(t) = Π(t) exp[± 𝒍𝒐𝒈 𝑮(𝒕)
𝟏

𝟐𝝅𝒊
∫

𝑮(𝝉 )

𝝉 − 𝑻 

∗

𝑳
𝒅𝝉]               (12) 

 

Now the function φ(τ ) = g(τ ) ,𝒀± (τ ) satisfies a Holder condition everywhere on L, except at the endpoints 𝑎𝑗  𝑎𝑛𝑑𝑏𝑗 , 

where it has integrable singularities of the 

form respectively. Hence by the Plemelj formula, the general solution to the inhomogeneous problem is: 

                                         Φ(z) = Y (z)∫ 
𝟏

𝟐𝝅𝒊
∫ 𝒈(𝝉 )

∗

𝑳
𝒅𝝉             (13) 

Theorem (Plemelj) (3.4): Let L be a simple smooth arc which, if closed, is traversed in the counter-clockwise direction. 

If φ(τ ) is a function satisfying a Holder condition on L, then 

                          𝜱±(𝒕) = ± 
𝟏

𝟐
𝝋(𝒕) 

𝟏

𝟐𝝅𝒊
∫

𝝋(𝑻)

𝑻−𝒕
 

∗

𝑳
𝒅𝑻                    (14) 

or, equivalently, 

                           𝜱+(𝒕)𝜱−(𝒕) = 𝝋(𝒕),                                                        (15) 

                                  𝜱+(𝒕)𝜱−(𝒕) =
𝟏

𝟐𝝅𝒊
∫

𝝋(𝑻)

𝑻−𝒕
 

∗

𝑳
 𝒅𝑻                                 (16) 

 

However, reformulating the original problem into an RHP still makes much sense, since it can always be reduced to the 

study of a linear singular-integral equation. Indeed, nonabelian RHPs usually arise when the original problem is nonlinear, 

so the value of the Riemann-Hilbert reformulation lies in the fact that it linearizes a nonlinear system effectively. 

The Riemann-Hilbert approach has acquired wide applications in integrable systems, orthogonal polynomials, random 

matrices, and asymptotic analysis. In particular for many integrable systems, the inverse spectral or inverse scattering 

problems associated particularly with the Cauchy problems for 1+1 dimensional PDEs, or the construction of soliton 

solutions for these systems, can be formulated as RHPs on the real line R, [6] p5 

The already obtained solutions to the Riemann-Hilbert problem can be used in order to solve linear equations with 

involutions in Leibniz algebras with logarithms. Namely,[3], 𝑝642 

 

4.Scalar Riemann-Hilbert problems: 

A Riemann-Hilbert (RH) problem is a jump problem for a piecewise analytic function. The setting is the following, let γ 

be an oriented smooth contour in the complex plane. The orientation induces a+ side and a−side on γ, where the +side lie 

to the left and the −side to the right if one traverses the contour according to the orientation. The contour may have end-

points or points of self-intersection. At such points the + and −sides are not defined. We use𝛄𝟎to denote the contour γ 

without the end-points and the points of self-intersection. in what follows, we shall be interested in Cauchy integrals of 

the form 

                                 Φ(z) = 
𝟏

𝟐𝝅𝒊
∫

𝝋(𝝉 )

𝝉 − 𝒛 

∗

𝑳
 dτ,                     (17) 

where L is assumed to be a simple smooth arc and 𝝋(𝝉) is a function satisfying a Holder condition on L. the scaler 

Riemann Hilbert problem is the function theoretical problems or finding single function Φ which is sectionally analytic 
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in 𝑪±bounded and its corresponding upper and lower radial say𝜱±having a prescribed jump dis continuity on real line 

𝜱±(𝒘) = 𝑮 it is dial limits of sokhotski plemeij integral of tow functions.[5], p5 

Definition (4.1): A smooth arc is a differentiable function γ(t) : t ∈ [α, β] → C,where γ′(t) is continuous and non-zero for 

t ∈ (α, β), continuous from the right at t = α, and continuous from the left at t = β. A simple arc is one which does 

not intersect itself, except in the case γ(α) = γ(β), when the arc is closed. 

 

Definition (4.2): The principal value of the integral Φ(t) = 
𝟏

𝟐𝝅𝒊
∫

𝝋(𝑻)

𝑻−𝒕
 

∗

𝑳
𝒅𝑻 

is defined to be 

                            𝒍𝒊𝒎
𝜺→𝟎

∫
𝝋(𝑻)

𝑻−𝒕
 

∗

𝑳→𝑳𝜺
𝒅𝑻 ≡ ∫

𝝋(𝑻)

𝑻−𝒕
 

∗

𝑳
𝒅𝑻                     (18) 

where 𝑳𝜺 is that part of L inside a circle of radius ε centred on t. Remark More generally, Φ(t) is said to exist in the 

Riemann sense if 

                                𝒍𝒊𝒎
𝜺,𝜼→𝟎

∫
𝝋(𝑻)

𝑻−𝒕
 

∗

𝑳→𝑳𝜺,𝜼
𝒅𝑻                  (19) 

exists, where 𝑳𝜺,𝛈is any sub-arc about t of vanishing length. Obviously, if Φ(t) exists in the Riemann sense, it has a 

principal value, but the converse is not true in general.[5], 𝑝15 

 

                                          ∫ 𝝋(𝝉)𝒅𝝉                               (20) 

 

 is some arbitrary constant. What is of particular interest is when z approaches a value lying on the arc L Due to the non-

integrable singularity in the denominator, we must develop a means to make sense of the integral when z = t. This is 

achieved by defining the principal value of the Cauchy integral.[7], p15 

 

The scalar problem on a closed arc L 

Definition (4.3): A function Φ(z) is sectionally analytic in some set S ⊆ C in which the arc L lies if it is analytic in S\L 

and continuous on L from its ⊕ and 𝜽 sides, taking the limiting values 𝜱+(𝒕)and 𝜱−(𝒕)respectively. With this definition, 

we proceed to state the Riemann-Hilbert problem: Given a piecewise smooth arc L, functions G(t) and g(t) that satisfy 

Holder conditions on L, with G(t) ≠ 𝟎 for all t ∈ L, find a sectionally analytic function Φ(z) whose limiting values from 

the ⊕ and 𝜽 sides of L satisfy 

                                        𝜱+(𝒕)= G(t) 𝜱−(𝒕)+ g(t).               (21) 

The above equation is sometimes called the jump condition for Φ(z). It will be seen the stated problem always has a 

solution, but without any further restrictions imposed, the solution is not unique. Therefore, an extra condition that we 

might consider is enforcing the degree of the solution at |z| = ∞. This is tantamount to demanding that Φ(z) = 𝒛𝒌as |z| → 

∞, for some κ ∈ Z. In fact, henceforth we will stipulate that Φ(z) vanishes at |z| = ∞, as this condition is often employed 

in physical problems he scalar problem on an open arc L In this section we assume L to be comprised of n non-intersecting 

open arcs, 

𝑳𝟏, . . . , 𝑳𝒏. Every arc L will have its endpoints denoted 𝒂𝒋,𝒃𝒋 , and will be traversed from 𝒂𝒋to 𝐛𝐣. With these definitions 

made, we proceed to solve the Riemann-Hilbert problem as stated in the last. As we did previously, we begin by seeking 

a solution to the homogeneous 

Problem 𝑿+(𝒕)= G(t) 𝑿−(𝒕)), or equivalently, 

                         log 𝑿+(𝒕)= log 𝑿+(𝒕)= 𝑿−(𝒕)log G(t). (22) 

 

Note that this time, however, log G(t) is certainly single-valued on each of the open arcs 𝑳𝟏, . . . , 𝑳𝒏., and so satisfies a 

Holder condition on L. We may therefore apply the Plemelj formula directly to (22), obtaining 

                    log X(z) = 
𝟏

𝟐𝝅𝒊
∫ 𝒍𝒐𝒈

 𝑮(𝝉 )

𝒛− 𝝉 

∗

𝑳
 dτ, 

                                           X(z) = exp [ 
𝟏

𝟐𝝅𝒊
n∑∫ 𝒍𝒐𝒈

 𝑮(𝝉 )

𝒛− 𝝉 

∗

𝑳
 dτ,      (23) 

But we must be mindful of the extra condition that is inherent to the problem in the case of open arcs; namely, the 

boundedness of solutions at the endpoints. In particular, observe that by definition G(τ ) ≠ 0 for all τ ∈ L. This 

means that φ(τ ) ≡ log G(τ ) is bounded everywhere on L, and in the language of 

 φ(τ ) belongs to the class of functions with γ = 0. Using the results of that section.[7], p22 we have, for 

 1 ≤ j ≤ n,                                 = 
𝟏

𝟐𝝅𝒊
∫ 𝒍𝒐𝒈 𝑮(𝒂𝒋)

∗

𝑳𝒋
 dτ                      {

𝟏

𝟐𝝅𝒊
𝒍𝒐𝒈(𝒂𝒋 − 𝒛) , 𝒂𝒔 𝒛 →  𝒂𝒋

𝟏

𝟐𝝅𝒊
𝒍𝒐𝒈(𝒃𝒋 − 𝒛) , 𝒂𝒔 𝒛 →  𝒃𝒋

}     (24) 

and letting  

       -
𝟏

𝟐𝝅𝒊
 𝑮(𝒂𝒋) =

𝟏

𝟐𝝅
 𝒂𝒓𝒈𝑮(𝒂𝒋) + 𝒍𝒐𝒈

𝒊

𝟐𝝅
 𝑮(𝒂𝒋)  ≡ 𝜶𝒋  +  𝒊𝑨𝒋                         (25) 

    
𝟏

𝟐𝝅𝒊
 𝑮(𝒃𝒋) =

𝟏

𝟐𝝅
 𝒂𝒓𝒈𝑮(𝒂𝒋) − 𝒍𝒐𝒈

𝒊

𝟐𝝅
 𝑮(𝒃𝒋)  ≡ 𝜶𝒋  +  𝒊𝑩𝒋                             (26) 

equation (21) for X(z) implies 

X(z)=    {

𝒆𝒙𝒑 [(𝜶𝒋 +  𝒊𝑨𝒋)𝒍𝒐𝒈(𝒂𝒋 −  𝒛) + 𝝏𝒋𝒂𝒋] = (𝒂𝒋 − 𝒛)𝑨𝒋+𝒊𝑨𝒋  𝒆𝝏𝒋(𝒂𝒋) 𝒂𝒔 𝒛 → 𝒂𝒋

𝒆𝒙𝒑 [(𝜷𝒋 +  𝒊𝑩𝒋)𝒍𝒐𝒈(𝒃𝒋 +  𝒛) − 𝝏𝒋𝒃𝒋] = (𝒃𝒋 − 𝒛)𝑩𝒋+𝒊𝑩𝒋   𝒆𝝏𝒋𝒃𝒋𝒂𝒔 𝒛 → 𝒃𝒋

  

}  (26).where 𝝏𝒋 is the function  

IJRDO - Journal of Mathematics ISSN: 2455-9210

Volume-10 | Issue-1 | Dec 2024 20



                          
𝟏

𝟐𝝅𝒊
n (𝟏 − 𝜹𝒊𝒋)∑∫ 𝒍𝒐𝒈

 𝑮(𝝉 )

𝒛− 𝝉 

∗

𝑳
 dτ                (27)   

 

5.The solution of scalar Riemann–Hilbert problems: 

We have presented a fairly wide class of functions, the α-Hölder continuous functions, for which the limits of Cauchy 

integrals are well-defined and regular. We continue with the solution of the simplest RH problem on smooth, closed, and 

bounded curves.  

 

5.1 Smooth, closed, and bounded curves 

Problem (5.1): Find φ that solves the continuous RH problem 

                      𝝋+(𝒔)𝝋−(𝒔) = 𝒇(𝒔), s ∈ Γ, φ(∞) = 0 f ∈𝒄𝟎,𝜶(Γ )         (28) 

where Γ is a smooth, bounded, and closed curve. 

This problem is solved directly by the Cauchy integral φ(z)=  𝝑𝜞𝒇(𝒛) 

                              𝝋+(𝒔)𝝋−(𝒔)𝝑+𝒇(𝒔)𝝑−𝒇(𝒔) = 𝒇(𝒔), 𝒔∈ Γ             (29) 

where Γ is a smooth, bounded, and closed curve. 

To show φ(∞) = 0 we use the following lemmas, which provide more precise details. 

Lemma (5.2): If |𝒔|𝒋 f (s) ∈ 𝑳𝟏 (Γ ) for j = 0, . . . , n, then 

                    ∫
𝒇(𝒔)

𝒔−𝒛

∗

𝜞
 𝒅𝒔 = ∑ 𝒄𝒋𝒛−𝒋𝒏−𝟏

𝒋=𝟏 + 𝜹 (𝒛−𝒏 ) 𝒂𝒔  |𝒛|  →  ∞         (30) 

 

For                                   𝒄𝒋 = − ∫ 𝒔𝒋−𝟏∗

𝜞
 f (s) ds                              (31) 

if z, sufficiently large, satisfies inf s∈ Γ |z − s| ≥ c > 0. 

Lemma (5.3): For f ∈ 𝑳𝟏 (Γ),             

                                𝑳𝒊𝒎
𝒛→∞ 

∫
𝒇(𝒔)

𝒔−𝒛

∗

𝜞
 𝒅𝒔 = − ∫ 𝒇(𝒔)𝒅𝒔

∗

𝜞
                     (32) 

 

where the limit is taken in a direction that is not tangential to Γ.[11], p34 

We have addressed existence in a constructive way. Now we address uniqueness. Let ψ(z) be another solution of Problem 

5.2 The function D(z) = ψ(z) − φ(z) satisfies                       𝑫+(𝒔)𝑫−(s) = 0, s ∈ Γ, D(∞) = 0          (33) 

 

The trivial jump 𝑫+(𝒔)𝑫−(s) is equivalent to stating that D is continuous up to Γ. It follows that D is analytic at every 

point on Γ. and hence D is entire. By liouville’s theorem, it must be identically zero. This shows that the Cauchy integral 

of f is the unique solution to Problem 5.1         

To show φ(∞) = 0 we use the following lemmas, which provide more precise details. 

 

Problem (5.4): Find φ that solves the homogeneous continuous RH problem 

                     𝝋+(𝒔)𝝋−(𝒔) = 𝒇(𝒔), s ∈ Γ, φ(∞) = 0 f ∈ 𝒄𝟎,𝜶(Γ)         (34) 

where Γ is a smooth, bounded, and closed curve, and g(s)≠ 𝟎 . 

Formally, this problem can be solved via the logarithm. Consider the RH problem 

solved by X (z) = log φ(z): 

         𝑿+(𝒔) = 𝑿−(𝒔) +  𝑮(𝒔) ⇔ 𝑿+(𝒔) − 𝑿−(𝒔) 𝑮(𝒔), 𝑮(𝒔) =  𝒍𝒐𝒈 𝒈 (𝒔)   (35) 

 

If log g (s) is well-defined and Holder continuous, the solution is given by 

                           φ(z) = exp(𝝑𝜞G(z)).                 (36) 

 

Furthermore, because |𝝑𝜞 G(z)| < ∞ for all z ∈ C\Γ, and it is continuous up to Γ, we have |𝝑𝜞G(z)| ≤ C for some C. This 

implies that φ(z) and 1/φ(z) are both bounded, continuous functions on C \ Γ. To see uniqueness, let ψ(z) be another 

solution and consider R(z) = ψ(z)/φ(z). Then𝑹+(𝒔) =𝑹−(𝒔) on Γ, and hence R(z) is entire R(z) is uniformly bounded on C 

\ Γ, and thus R(z) ≡ 1, or ψ(z) = φ(z).[12], p25 

For a general Holder continuous function g, log g may not be well-defined. Indeed, even if one fixes the branch of the 

logarithm, log g generically suffers from discontinuities. To rectify this issue, we define the index of a function g with 

respect to traversing Γ in the positive direction to be the normalized increment of its argument: 

𝒊𝒏𝒅𝜞 𝒈(𝒔)  ≜
𝟏

𝟐𝝅 
[𝒂𝒓𝒈𝒈(𝒔)]𝜞 =

𝟏

𝟐𝝅𝒊 
[𝒍𝒐𝒈𝒈(𝒔)]𝜞 = ∫ 𝒅𝒍𝒐𝒈(𝒔)                   (37) 

 

We defer the extension of these results to unbounded contours such as until  

This case is dealt with in a more straightforward way using L p and Sobolev spaces. All solution formulae hold with slight 

changes in interpretation. 

We move to the simplest case of a scalar RH problem with a multiplicative jump. 

 

Problem (5.5): Find φ that solves the inhomogeneous continuous RH problem 

                           𝝋+(𝒔)= 𝝋−(𝒔)g(s), s ∈ Γ, φ(∞) = 1, g ∈ 𝑪𝟎,𝜶         (38) 

where Γ is a smooth, bounded arc extending from z = a to z = b, and g (s). 
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Problem (5.6): Find φ that solves the inhomogeneous continuous RH problem 

                           𝝋+(𝒔)= 𝝋−(𝒔)g(s), s ∈ Γ, φ(∞) = 1, g ∈ 𝑪𝟎,𝜶       (39) 

where Γ is a smooth, bounded arc extending from z = a to z = b, and g(s) ≠ 0. 

Divide (3.4) by ν and write 
𝝋+(𝒔)

𝑽+(𝒔)
=

𝝋−(𝒔)

𝑽−(𝒔)
+

𝒇(𝒔)

𝑽+(𝒔)
 ,

𝝋(𝒔)

𝑽(𝒔)
𝝆𝒛𝒏𝒂+𝒏𝒃−𝟏 as z → ∞. (40) 

 

We assume f satisfies an α-Holder condition. Thus f (s)/ 𝑽+(𝒔) satisfies an (α, 𝜻𝒂)Holder condition near z = a and a similar 

condition near z = b. A solution of problem, assuming possible moment conditions (13) are satisfied, is given by 

                                φ(z) =𝑽(𝒛) ∫
𝒇(𝒔)

𝑽+(𝒔)(𝒔−𝒛)

∗

𝜞
𝒅𝒔.            (41)           

 we see that φ(z) has bounded singularities at the endpoints of Γ whenever 𝜻𝒄≠ 0; Otherwise, there is a logarithmic 

singularity present. As before, 

                           φ(z) =𝑽(𝒛)(∫
𝒇(𝒔)

𝑽+(𝒔)(𝒔−𝒛)

∗

𝜞
𝒅𝒔 + 𝒑(𝒛)).           (42) 

is the solution, where P(z) is a polynomial of degree less than (𝒏𝒂 + 𝒏𝒃) if 𝐧𝐚+ 𝐧𝐛< 0; otherwise P = 0 and we have 𝒏𝒂+ 

𝒏𝒃orthogonality conditions for a solution to exist with k = 𝒏𝒂+ 𝒏𝒃Note that different fundamental solutions can be Hosen 

when the fundamental solution is not unique. This gives rise to solutions with different bounded ness properties.[11], p40 

 

6.Dictation: 

The fact studied will now be used solve scalar RHP. the index of function f(x) with respect to𝛾 the increment of argument 

in traversing: 

                  Ind f(x) =
𝟏

𝟐𝝅𝒊
 [arg𝒇(𝒙)]𝜸=

𝟏

𝟐𝝅𝒊
[𝒍𝒐𝒈𝒇(𝒙)]𝜸 =

𝟏

𝟐𝝅𝒊
∫ 𝒍𝒐𝒈 𝒇(𝒙)

∗

𝜸
    (43) 

 

Recall the solution of the simplest scalar RHP. let 𝜸 = 𝑹 and 𝒋𝜸be a Holder continuous scalar function in R then the 

following additive scalar RHP for Y in C: 

1. Y is analytic in C /R 

2. 𝒀+(t) = 𝒀+(t)+ 𝒋𝒀(𝒙) , x ∈  R 

3. Y(z) →0 as z → ∞. 

Has the following unique solution as Cauchy type integral  

                   𝒚(𝒛) = 𝑪𝑹𝒋𝒀(𝒛) −
𝟏

𝟐𝝅𝒊
 ∫

𝒋𝒀(𝒙)

𝒙 −𝒛

∗

𝑹
𝒅𝒙      (44)                                  

Indeed the first condition satisfied for Cauchy type-integral definition and sokhotski-plemelj formulae for x ∈R  

                                                𝑪𝑹
+𝒋𝒀(𝒛) = 𝒋𝒀(𝒙)               (45) 

Thence 𝑪𝑹𝒋𝒀(𝒙) satisfied the second condition .to show the third condition we used the geometric serie in the definition 

of  𝑪𝑹𝒋𝒀(𝒙) there for  

              𝑪𝑹𝒋𝒀(𝒛) = −
𝟏

𝟐𝝅𝒊
 ∫ 𝒋𝒀(𝒙)[𝑪

∗

𝑹
−

𝟏

𝒛
)

𝟏

𝟏−(
𝒙

𝒛
)
]𝒅𝒙                                 (46) 

                                           = 
𝟏

𝟐𝝅𝒊
 ∫ 𝒋𝒀(𝒙)[

∗

𝑹
∑ (

𝒙

𝒛
)𝒏]∞

𝒏=𝟎 𝒅𝒙 

                                            =∑
𝟏

𝒛𝒏+𝟏 (−
𝟏

𝟐𝝅𝒊
 ∫ 𝒋𝒀(𝒙)

∗

𝑹
∞
𝒏=𝟎 𝒙𝒏𝒅𝒙   (47) 

                                    𝑪𝑹𝒋𝒀(𝒛) = ∑
𝟏

𝒛𝒏+𝟏
∞
𝒏=𝟎 𝒂𝒏              (48)                                              

Note that as z → ∞.we have 𝑪𝑹𝒋𝒀(𝒛) →0 there exists solution of 𝑪𝑹𝒋𝒀(𝒛),of the additive scalar RHP. 

The scalar linear Riemann–Hilbert problem for D is stated as follows. Given 

Holder continuous functions λ (t) ≠f (t) on∂ D. To find a function φ (z) analytic 

in D, continuous in the closure of D with the boundary condition 

                        Re λ(t)φ (t) = f (t), t ∈ ∂ D. (49) 

This condition can be also written in the form.[8], p64 

 

7.Results: 

The Riemann-Hilbert approach has acquired wide applications in integrable systems. the scaler Riemann Hilbert problem 

is the function theoretical problems or finding single function.to solve we need know the first condition satisfied for 

Cauchy type integral definition, sokhotski-plemelj formulae for x ∈R and Holder Condition. The scalar linear Riemann–

Hilbert problem for D is stated as follows. 

 

8.Conclusion: 

 The solve of scalar Riemann–Hilbert problem for circular multiply connected domains. The method is based on the 

reduction of the boundary value and complex plan, hardy theorem and condition satisfied for Cauchy type integral 

definition and sokhotski-plemelj formulae for x. problem to a system of functional equations. In the previous works, the 

Riemann–Hilbert problem and its partial cases such as the Dirichlet problem were solved under geometrical restrictions 

to the domains. he solutions of initial value problems with both zero and nonzero initial functions are obtained and 

homogeneous and non-homogeneous equations are studies. 
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