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Abstract:   
In this work, we give the relationship between the alterne tensor 𝒅𝒆𝒕 ∈ 𝑱𝒏( 𝑳𝟏

𝒏) which is the volume element of  𝑳𝟏
𝒏 and the 

symmetric tensor inner product on 𝑳𝟏
𝒏.  
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1. INTRODUCTION   

An important idea underlying general relativity is that space-time which may be described as a curved four-dimensional  

mathematical structure called a pseudo-Riemannian manifold. A Lorentzian manifold 𝑳𝟏
𝒏  is a special case of a pseudo-

Riemannian manifold in which the signature of metric is (1,n-1). We need to study on vectors , one-forms and tensors to 

explain cross product on vectors in 𝑳𝟏
𝒏  .  

  

Vectors, One-Forms and Tensors  

A vector is a quantitiy with a magnitude and a direction. This primitive concept, familiar from undergraduate physics and 

mathematics, applies equally in general relativity. An example of a vector is  𝑑�⃗�, the difference vector between two 

infinitesimally close points of space-time .Vectors form a linear algebra. This is valid for vectors in a curved four-

dimensional space-time as they are vectors in three-dimensional Euclidean space. A one-form is defined as a linear scalar 

function of a vector. That is, a one-form takes a vector as input and outputs a scalar. For the one-form  �̃�, �̃�(�⃗⃗�) is also 

called the scalar product and denoted �̃�(�⃗⃗�) =< 𝑃,̃ �⃗⃗� >.  The one-form is a linear function. We may associate a one-form 

with a space-time point, resulting in a one-form field �̃� = �̃�𝑋. 

 �̃�𝑋 is a one-form at point x while �̃�(�⃗⃗�)  is a scalar, defined implicitily at point x. One-forms obey their own linear algebra 

distinct from that of vectors. Vectors and one-forms are linear operators on each other, producing scalars. It is often helpful 

to consider  a vector as being a linear scalar function of a one-form. The vector space of one-forms is called the dual vector 

(or cotangent) space to distinguish it from the linear space of vectors (tangent space).[1]  

  

Definition1.1  If 𝑉 is a vector space over ℝ we will denote the k-fold product 𝑉 × … × 𝑉 𝑏𝑦 𝑉𝑘 .  A multilinear function 

𝑇:𝑉𝑘 → ℝ is called a k-tensor on 𝑉 and the set of all k-tensors, denoted 𝐽𝑘(𝑉), becomes a vector space over ℝ .  

Definition1.2  If for 𝑆, 𝑇 ∈ 𝐽𝑘(𝑉) 𝑎𝑛𝑑 𝑎 ∈ ℝ we define  

 

(𝑆 + 𝑇)(𝑣1, … , 𝑣𝑘) = 𝑆(𝑣1, … , 𝑣𝑘) + T(𝑣1, … , 𝑣𝑘) 

(𝑎𝑆)(𝑣1, … , 𝑣𝑘) = 𝑎𝑆(𝑣1, … , 𝑣𝑘) 

 

If  𝑆 ∈ 𝐽𝑘(𝑉) 𝑎𝑛𝑑  𝑇 ∈ 𝐽𝑙(𝑉) we define the tensor product 𝑆⨂𝑇 ∈ 𝐽𝑘+𝑙(𝑉) 𝑏𝑦 

 

𝑆⨂𝑇(𝑣1, … , 𝑣𝑘 , 𝑣𝑘+1, … , 𝑣𝑘+𝑙) = 𝑆(𝑣1, … , 𝑣𝑘) T(𝑣𝑘+1, … , 𝑣𝑘+𝑙) 

 

 

  

Definition 1.3: If 𝑓: 𝑉 → 𝑊 is a linear transformation, a linear transformation 𝑓∗: 𝐽𝑘(𝑊) → 𝐽𝑘(𝑉) is defined by  

 

𝑓∗T(𝑣1, … , 𝑣𝑘) = 𝑇(𝑓(𝑣1), … , 𝑓(𝑣𝑘)) 𝑓𝑜𝑟 𝑇 ∈ 𝐽
𝑘(𝑊)𝑎𝑛𝑑 𝑣1, … , 𝑣𝑘 ∈ 𝑉. 

 

There are well known tensors aside from members  of dual space 𝑉∗. The inner product <,>∈ 𝐽2(ℝ𝑛) is the first example. 

The usual inner product on ℝ𝑛 is symmetric and positive definite 2-tensor. Despite its importance the inner product plays 

for lesser role than another familiar function, the tensor 𝒅𝒆𝒕 ∈ 𝑱𝒏(  ℝ𝑛)  which is alternating n- tensor. We denote 

alternating k-tensors on 𝑉 𝑏𝑦 Λ𝑘(𝑉) which has dimension (
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
 where n is the dimension of 𝑉. If 𝑛 = 𝑘 then 

 Λ𝑛(𝑉) has dimension 1.Thus all alternating n-tensors on 𝑉  are multiples of any non-zero one. Since the determinant is 

an example of such a member of Λ𝑛(ℝ𝑛). 

 

  

2. PRELIMINARIES     

 

Theorem 2.1 Let 𝑣1, … , 𝑣𝑛  be a basis for 𝑉  and let 𝜔 ∈ Λ𝑛(𝑉) . If 𝜔𝑖 = ∑ 𝑎𝑖𝑗𝑣𝑗
𝑛
𝑗=1  are n vectors in V then 

𝜔(𝜔1, … , 𝜔𝑛) = det (𝑎𝑖𝑗) 𝜔(𝜔1, … , 𝜔𝑛). An  orientation for V is depend on the sign of det A. If an orientation 𝜇 for V 

has been given, it follows that there is a unique 𝜔 ∈ Λ𝑛(𝑉)  such that 𝜔(𝑣1, … , 𝑣𝑛) = 1  whenever 𝑣1, … , 𝑣𝑛  is an 

orthonormal basis such that [𝑣1, … , 𝑣𝑛] = 𝜇. This unique 𝜔 is called the volüme element of V, determined by the inner 

product  T and orientation 𝜇. Note that det is the volume element of ℝ𝑛 determined by the usual inner product and usual 

orientation, and that |det (𝑣1, … , 𝑣𝑛)| is the volume of the parallelpiped spanned by the line segments from 0 to each 

𝑣1, … , 𝑣𝑛. 
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If 𝑣1, … , 𝑣𝑛−1 ∈ ℝ

𝑛 and 𝜑 is defined by 

 

𝜑(𝜔) = 𝑑𝑒𝑡

(

 
 

𝑣1.
.
.

𝑣𝑛−1
 𝜔 )

 
 

  then 𝜑 ∈ Λ1(ℝ𝑛) ; therefore there is a unique 𝑧 ∈ ℝ𝑛 such that  

< 𝜔, 𝑧 >= 𝜑(𝜔) = 𝑑𝑒𝑡

(

 
 

𝑣1.
.
.

𝑣𝑛−1
 𝜔 )

 
 

. This z is denoted 𝑣1 × … × 𝑣𝑛−1 and called the cross product of 𝑣1, … , 𝑣𝑛−1. 

 

In the case of two vectors  𝑣1, 𝑣2 ∈ ℝ
3 

< 𝜔, 𝑧 > = 𝜑(𝜔) = 𝑑𝑒𝑡 (
𝑣1
𝑣2
 𝜔
)  

<  𝜔, 𝑧 > = 𝜔1𝑧1 + 𝜔2𝑧2 +𝜔3𝑧3  

 

𝑑𝑒𝑡 (
𝑣1
𝑣2
 𝜔
) = |

𝑣11 𝑣12 𝑣13
𝑣21 𝑣22 𝑣23
𝜔1 𝜔2 𝜔3

| = 𝜔1 |
𝑣12 𝑣13
𝑣22 𝑣23

| − 𝜔2 |
𝑣11 𝑣13
𝑣21 𝑣23

| + 𝜔3 |
𝑣11 𝑣12
𝑣21 𝑣22

| ⇒ 

 

𝑧1 = 𝑣12𝑣23 − 𝑣22𝑣13 ,    𝑧2 = 𝑣21𝑣13 − 𝑣11𝑣23 ,    𝑧3 = 𝑣11𝑣22 − 𝑣12𝑣21 which means 

 

𝑧 = (𝑧1, 𝑧2, 𝑧3) =  𝑣1 × 𝑣2 

 

In the case of one vector  𝑣1 ∈ ℝ
2 

<  𝜔, 𝑧 > = 𝜔1𝑧1 +𝜔2𝑧2 

𝑑𝑒𝑡 (
𝑣1
𝜔
 
) = |

𝑣11 𝑣12
𝜔1 𝜔2

| = 𝜔2𝑣11 − 𝜔1𝑣12 ⇒ 𝑧1 = −𝑣12 𝑎𝑛𝑑 𝑧2 = 𝑣11  which means 

𝑧 = (−𝑣12, 𝑣11) 𝑖𝑠 𝑣1 × 

 

 

 In the case of three vector  𝑣1, 𝑣2, 𝑣3 ∈ ℝ
4 

<  𝜔, 𝑧 > = 𝜔1𝑧1 + 𝜔2𝑧2 + 𝜔3𝑧3  + 𝜔4𝑧4  

 

 

 

𝑑𝑒𝑡 (

𝑣1
𝑣2
 𝑣3
𝜔

) = |

𝑣11 𝑣12 𝑣13 
𝑣21 𝑣22 𝑣23 
𝑣31 𝑣32 𝑣33 

  𝑣14
  𝑣24
  𝑣34 

 𝜔1 𝜔2     𝜔3 𝜔4

| 

  

                   = −𝜔1|𝑉41| + 𝜔2|𝑉42| − 𝜔3|𝑉43| + 𝜔4|𝑉44|  

    
𝑧1 = −|𝑉41|       𝑧2 = |𝑉42|      𝑧3 = −|𝑉43|    𝑧4 = |𝑉44|  which means 

 

𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) =  𝑣1 × 𝑣2 × 𝑣3 . 

 

By similar way if 𝜔 ∈ Λ𝑛(𝑉) is a volume element we can define a ” cross product” 𝑣1 × …× 𝑣𝑛−1 in terms of 𝜔.      [2] 

 

Definition 2.1 Let 𝐿1
3  be the three dimensional Lorentz-Minkowski space, that is the real vector space ℝ3 endowed with 

the Lorentzian metric < , > 𝐿  given by < , > 𝐿 = 𝑑𝑥1
2 + 𝑑𝑥2

2 − 𝑑𝑥3
2 where (𝑥1, 𝑥2, 𝑥3) are the canonical coordinates of 

ℝ3. Associated to that metric one has the cross product of two vectors 𝑣1, 𝑣2 ∈ 𝐿1
3  given by 

 

 𝑣1 × 𝑣2 = (𝑣12𝑣23 − 𝑣22𝑣13 , 𝑣21𝑣13 − 𝑣11𝑣23 , 𝑣21𝑣12 − 𝑣11𝑣22) . [3]  

 

We can get the same result by using the method  in [2].  Similarly cross product could be defined for one vector 𝑣1 ∈ 𝐿1
2  

and three vectors 𝑣1, 𝑣2, 𝑣3 ∈ 𝐿1
4 .  

In general 𝑛 − 1 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑣1, … , 𝑣𝑛−1 ∈ 𝐿1
𝑛. 
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3. CROSS PRODUCT OF VECTORS IN 𝑳𝒏𝟏  
 

Theorem 3.1  If  𝑣1, 𝑣2 ∈ 𝐿1
3  and 𝜑 is defined by 𝜑(𝜔) = 𝑑𝑒𝑡 (

𝑣1
𝑣2
 𝜔
)  𝑎𝑛𝑑 𝜑 ∈ Λ1(𝐿1

3)  they there is a unique 𝑧 ∈ 𝐿1
3  such 

that  < 𝜔, 𝑧 >𝐿 = 𝜑(𝜔) = 𝑑𝑒𝑡 (
𝑣1
𝑣2
 𝜔
) this z is denoted 𝑣1 ×𝐿 𝑣2 and called the cross product of  𝑣1, 𝑣2. 

 

Proof: Let 𝑣1, 𝑣2 ∈ 𝐿1
3  and 𝜑 is defined by 𝜑(𝜔) = 𝑑𝑒𝑡 (

𝑣1
𝑣2
 𝜔
)  𝑤ℎ𝑒𝑟𝑒   

𝜑 ∈ Λ1(𝐿1
3)  𝑓𝑜𝑟 𝑧 ∈ 𝐿1

3   we have  <  𝜔, 𝑧 > 𝐿 = 𝜔1𝑧1 + 𝜔2𝑧2 − 𝜔3𝑧3  and  
 

𝑑𝑒𝑡 (
𝑣1
𝑣2
 𝜔
) = |

𝑣11 𝑣12 𝑣13
𝑣21 𝑣22 𝑣23
𝜔1 𝜔2 𝜔3

| = 𝜔1 |
𝑣12 𝑣13
𝑣22 𝑣23

| − 𝜔2 |
𝑣11 𝑣13
𝑣21 𝑣23

| + 𝜔3 |
𝑣11 𝑣12
𝑣21 𝑣22

| 

 

   

< 𝜔, 𝑧 >𝐿 = 𝑑𝑒𝑡 (
𝑣1
𝑣2
 𝜔
) ⇒

𝑧1 = 𝑣12𝑣23 − 𝑣22𝑣13
𝑧2 = 𝑣21𝑣13 − 𝑣11𝑣23
𝑧3 = 𝑣21𝑣12 − 𝑣11𝑣12

 

It is clear that 𝑧 = (𝑧1, 𝑧2, 𝑧3) is the unique element that  satisfies the equation and by [2] it is the cross product of 

𝑣1𝑎𝑛𝑑 𝑣2 

 

 

 

 

 

 

Result 1: In the case of one vector 𝑣1 ∈ 𝐿1 
2 ; 

 

<  𝜔, 𝑧 > 𝐿 = 𝜔1𝑧1 − 𝜔2𝑧2 

 

𝑑𝑒𝑡 (
𝑣1
𝜔
 
) = |

𝑣11 𝑣12
𝜔1 𝜔2

| = 𝜔2𝑣11 − 𝜔1𝑣12 ⇒ 𝑧1 = −𝑣12 𝑎𝑛𝑑 𝑧2 = −𝑣11  which means 

 

𝑧 = (−𝑣12, −𝑣11) 𝑖𝑠 𝑣1 ×. 

 

Result 2: In the case of three vectors 𝑣1, 𝑣2, 𝑣3 ∈ 𝐿1 
4 ; 

 
<  𝜔, 𝑧 >𝐿 = 𝜔1𝑧1 + 𝜔2𝑧2 +𝜔3𝑧3 − 𝜔4𝑧4  

 

 

𝑑𝑒𝑡 (

𝑣1
𝑣2
 𝑣3
𝜔

) = |

𝑣11 𝑣12 𝑣13 
𝑣21 𝑣22 𝑣23 
𝑣31 𝑣32 𝑣33 

  𝑣14
  𝑣24
  𝑣34 

 𝜔1 𝜔2     𝜔3 𝜔4

| 

  

                   = −𝜔1|𝑉41| + 𝜔2|𝑉42| − 𝜔3|𝑉43| + 𝜔4|𝑉44| where 𝑉𝑖𝑗 is the minor of the entry 𝜔𝑗  

    
𝑧1 = −|𝑉41|       𝑧2 = |𝑉42|      𝑧3 = −|𝑉43|    𝑧4 = −|𝑉44| which means  

 

𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) =  𝑣1 ×𝐿 𝑣2 ×𝐿 𝑣3. 

 

Result 3: Similarly in the case of 𝑛 − 1 vectors 𝑣1, … , 𝑣𝑛−1 ∈ 𝐿1 
𝑛 ; one  can define a cross product 𝑣1 ×𝐿 …×𝐿 𝑣𝑛−1 in 

terms of 𝜔. 
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