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Abstract 
This study aims to recognizing the role played by differential and normal equations loop and their methods of solution if 

they are linear or non-linear, their class, and if they are of constant or variable coefficient .The study also aims to study 

the concept and development implementation of differential equations and their increasing importance in all scientific 

fields and their some applications. We followed in this study the mathematical deductive and inductive by using Runga - 

Kutta method by a new mathematical technique . We found the some following results:.. Runga - Kutta's method in 

general situation depends upon calculating inclination at the point 𝑥0 and at many other points nearing 𝑥0 then taking 

the average of these inclinations and multiply it by ℎ then adding the resulting value to𝑌0 in order to get the result 

𝑌1.𝑌1 = 𝑌0 + 𝐾𝑎𝑣 , Calculating relative error in Runga - Kutta's method from second and fourth order by knowing the 

analytical solution . The high efficiency of using Runga - Kutta's methods in solving the initial value problem comes 

through the numerical results obtained from the application of the methods and various examples.The new 

mathematical technique which we used in this study its an easy and accurate method that reduces errors and provide 

graphic solutions , so we recommended researcher to use it. 
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1.INTRODUCTION: 

On physics, we always are interested in how things move, it could be: in time, in position, or any other variable, the 

important part is that we always want to know how are the changes, and that's described by a differential equation. 

Newton's second law of motion, 𝑚𝑎 = 𝑓, is maybe one of the first differential equations written. This is a second order 

equation, since the acceleration is the second time derivative of the particle position function. Second order differential 

equations are more difficult to solve than first order equations. second order differential equations of a particular type: 

those that are linear and have constant coefficients. Such equations are used widely in the modelling of physical 

phenomena, for example, in the analysis of vibrating systems and the analysis of electrical circuits. The Rungekutta 

method This method was developed by the German scientists Rang and Cotta. One of the advantages of this method is 

to avoid the derivatives of the higher ranks that we used in Tyler's method, as this method has two types: Rungekutta of 

the second rank. Rungekutta of the fourth rank. The fourth Runga - Kutta is more popular and widely used due to its 

precise accuracy. Until now, we've been trying to understand how to give some instructions to the PC using C++, in this 

presentation, we're going to study this instructions applied to an specific problem, in this case it will be: solve 

differential equations. MATLAB (Matrix Laboratory): MATLAB is a platform for scientific calculation and high-level 

programming which uses an interactive environment that allows you to conduct complex calculation tasks more 

efficiently than with traditional languages, such as C, C++ and FORTRAN. It is the one of the most popular platforms 

currently used in the sciences and engineering MATLAB is an interactive high-level technical computing environment 

for algorithm development, data visualization, data analysis and numerical analysis. MATLAB is suitable for solving 

problems involving technical calculations using optimized algorithms that are incorporated into easy to use commands. 

 

2. Second order Ordinary Differential Equations: 

An equation of the form𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦, where 𝑎, 𝑏 and 𝑐 are constants, is called a linear second order differential 

equation with constant coeffi cients. When the right-hand side of the differential equation is zero, it is referred to as a 

homogeneous differential equation. When the right-hand side is not equal to zero it is referred to as a non-homogeneous 

differential equation. There are numerous engineering examples of second order differential equations. [ 13, p473] 

 

Definition(2.1): 

A second order linear differential equation for the function 𝑦 is 

�́́� + 𝑎1(𝑡)�́� + 𝑎0(𝑡)𝑦 = 𝑏(𝑡)                                 (2.1) 

where 𝑎0, 𝑎1, 𝑏 are given functions on the interval 𝐼 ⊂ ℝ The Eq. (2.1) above : 

(i) is homogeneous iff the source 𝑏(𝑡) = 0 for all 𝑡 ∈ ℝ.  

(ii) has constant coefficients iff𝑎1 and 𝑎0 are constants. 

(iii) has variable coefficients iff either 𝑎1 or𝑎0 is not constant. 

 

3. Homogeneous Second Order Linear Ordinary Differential Equations with Constant Coefficients: 

A homogeneous 2nd order linear ode with constant coefficients is given by 

ay′′(x) + by′(x) + cy(x) = 0                                                          (3.1) 

Here 𝑎 ≠ 0, 𝑏 and 𝑐 are given real constants. 

y"(x) +
b

a
y′(x) +

c

a
y(x) = 0 

we can construct the general solution of (2.2) by finding two linearly independent solutions. Tofind a solution of , let us 

try 

𝑦(𝑥) = 𝑒𝜆𝑥 

where 𝜆 is a constant. 

Differentiating, we obtain 

𝑦′(𝑥) = 𝜆𝑒𝜆𝑥 

𝑦′′(𝑥) = 𝜆. 𝜆𝑒𝜆𝑥 = 𝜆2𝑒𝜆𝑥 

Substituting into (3.1), we find that 

𝑎𝜆2𝑒𝜆𝑥 + 𝑏𝜆𝑒𝜆𝑥 + 𝑐𝑒𝜆𝑥 = 0 

𝑒𝜆𝑥[𝑎𝜆2 + 𝑏𝜆 + 𝑐] = 0 

The ODE in (3.1) is satisfied for all 𝑥 if 

𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0 

We consider the following cases. 

 

Case (3.1):𝑏2 − 4𝑎𝑐 > 0 

Now if 𝑏2 − 4𝑎𝑐 > 0, then the quadratic equation in 𝜆 has two distinct real solutions given by 

𝜆 = 𝜆1 ≡
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

𝜆 = 𝜆2 ≡
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

and we obtain two solutions of (3.1) as given by 
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Since 𝑦2 𝑦1⁄ = 𝑒𝜆2𝑥 𝑒𝜆1𝑥⁄ = 𝑒[𝜆2−𝜆1] is not a constant as 𝜆1 ≠ 𝜆2 , the two solutions 𝑦1and 𝑦2 are linearly independent. 

If 𝑏2 − 4𝑎𝑐 > 0  tells us the general solutionof (3.1) is given by 

𝑦 = 𝐴𝑒𝜆1𝑥 + 𝐵𝑒𝜆2𝑥 

where 𝐴 and 𝐵 are arbitrary constants and 𝜆1 and  𝜆2 are the two distinct real solutions of the quadratic equation𝑎𝜆2 +
𝑏𝜆 + 𝑐 = 0 

 

Case (𝟑. 𝟐): 𝑏2 − 4𝑎𝑐 = 0 

 For this particular case, the quadratic equation 𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0 has only one real solution given by 𝜆 = 𝜆1 ≡
−𝑏/(2𝑎). Hence, in seeking a solution of the form𝑦 = 𝑒𝜆𝑥 we obtain  only one solution of (3.1), that is, 𝑦1 = 𝑒−𝑏𝑥/(2𝑎). 

To construct the general solution of (3.1), another solution which is linearly independent to 𝑦1 is needed. To find 

another solution, we let 

𝑦 = 𝑢(𝑥). 𝑒𝜆1𝑥 

where 𝑢(𝑥) is a function to bedetermined Differentiating, we obtain 

𝑦′ = 𝜆1𝑢(𝑥). 𝑒𝜆1𝑥 + 𝑢′(𝑥). 𝑒𝜆1𝑥 

𝑦′′ = 𝜆1
2𝑢(𝑥). 𝑒𝜆1𝑥 + 2𝜆1𝑢′(𝑥). 𝑒𝜆1𝑥 + 𝑢′′(𝑥)𝑒𝜆1𝑥. 

 Substituting into (3.1), we find that  

𝑎[𝜆1
2𝑢(𝑥). 𝑒𝜆1𝑥 + 2𝜆1𝑢′(𝑥). 𝑒𝜆1𝑥 + 𝑢′′(𝑥)𝑒𝜆1𝑥] + 𝑏(𝜆1𝑢(𝑥). 𝑒𝜆1𝑥 + 𝑢′(𝑥). 𝑒𝜆1𝑥) + 𝑐𝑢(𝑥)𝑒𝜆1𝑥 = 0 

which may be rewritten as 

[(𝑎𝜆1
2 + 𝑏𝜆1 + 𝑐)𝑢(𝑥) + (2𝜆1𝑎 + 𝑏)𝑢′(𝑥) + 𝑎𝑢′′(𝑥)]𝑒𝜆1𝑥 = 0. 

Since 𝑎𝜆1
2 + 𝑏𝜆1 + 𝑐 = 0  and 𝜆1 = −𝑏/(2𝑎) the equationabove reduces to 

𝑎𝑢′′(𝑥)𝑒𝜆1𝑥 = 0. 
Since 𝑎 ≠ 0 and 𝑒𝜆1𝑥we obtain the ordinary differential equations 

𝑢′′(𝑥) = 0 

A solution of this simple ordinary differential equations is 𝑢(𝑥) = 𝑥. Summarizing, if  

𝑏2 − 4𝑎𝑐 = 0, two particular solutions of (2.2) are given by 

𝑦1 = 𝑒−𝑏𝑥/(2𝑎)and 𝑦2 = 𝑥𝑒−𝑏𝑥/(2𝑎) 

Since 𝑦2/𝑦1 = 𝑥  (not a constant), the two solutions above are linearly independent. the required general solution of the 

ODE is𝑦 = 𝐴𝑒−𝑏𝑥/(2𝑎) + 𝐵𝑥. 𝑒−𝑏𝑥/(2𝑎) 

where 𝐴 and 𝐵 are arbitrary constants. 

 

Case (3.3): 𝑏2 − 4𝑎𝑐 < 0 

For this case, the quadratic equation𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0does not have any real solutions. It has two distinct complex 

solutions given by 

𝜆 = 𝜆1 ≡ −
𝑏

2𝑎
+ 𝑖

√|𝑏2 − 4𝑎𝑐|

2𝑎
 

𝜆 = 𝜆2 ≡ −
𝑏

2𝑎
− 𝑖

√|𝑏2 − 4𝑎𝑐|

2𝑎
 

where𝑖 = √−1. 

If we ignore the fact that𝜆1 and𝜆2are complex and proceed as in Case I above, the general solution of (3.1) is given by 

𝑦 = 𝐴𝑒𝜆1𝑥 + 𝐵𝑒𝜆2𝑥 

where 𝐴 and 𝐵 are arbitrary constants [25, p55-58] 

 

4.Complementary Function and Particular Integral: 

If in the differential equation 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑓(𝑥)                                (4.1) 

the substitution𝑦 = 𝑢 + 𝑣  is made then : 

𝑎
𝑑2(𝑢 + 𝑣)

𝑑𝑥2
+ 𝑏

𝑑(𝑢 + 𝑣)

𝑑𝑥
+ 𝑐(𝑢 + 𝑣) = 𝑓(𝑥) 

Rearranging gives:  

 

(𝑎
𝑑2𝑢

𝑑𝑥2
+ 𝑏

𝑑𝑢

𝑑𝑥
+ 𝑐𝑢) + (𝑎

𝑑2𝑣

𝑑𝑥2
+ 𝑏

𝑑𝑣

𝑑𝑥
+ 𝑐𝑣) = 𝑓(𝑥) 

If we let 

 

𝑎
𝑑2𝑣

𝑑𝑥2
+ 𝑏

𝑑𝑣

𝑑𝑥
+ 𝑐𝑣 = 𝑓(𝑥)                             (4.2) 

 

Then 

𝑎
𝑑2𝑢

𝑑𝑥2
+ 𝑏

𝑑𝑢

𝑑𝑥
+ 𝑐𝑢 = 0                               (4.3) 
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The general solution, u. of equation (4.3) will contain two unknown constants, as required for the general solution of 

equation (4.1). The function 𝑢 is called the complementary function (C. F. ). If the particular solution, 𝑣, of equation 

(4.2) can be determined without containing any unknown constants then 𝑦 = 𝑢 + 𝑣will give the general solution of 

equation (4.1). The function 𝑣 is called the particular integral (P. I. ). Hence the general solution of equation (4.1) is 

given by : 

𝒚 = 𝐂. 𝐅. +𝐏. 𝐈.             [13, p483] 
 

5. Runga - Kutta's Method: 

 Fundamentally, all Runge Katta methods are generalizations of the basic Euler formula (5.1) of in that the slope 

function 𝑓is replaced by a weighted average of slopes over the interval 

𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+1. That is 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑤1𝑘1 + 𝑤2𝑘2 + ⋯ = 𝑤𝑚𝑘𝑚)             (5.1) 

Here the weights𝑤𝑖 , 𝑖 = 1,2, … , 𝑚,are constants that generally satisfy𝑤1 + 𝑤2 + ⋯ + 𝑤𝑚 = 1, and each 𝑘𝑖 , 𝑖 =
1,2, … 𝑚,is the function 𝑓evaluated at a selected point  (𝑥, 𝑦)for which 𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+1.We shall see that the 𝑘𝑖are 

defined recursively. The number 𝑚 is called the order of the method. Observe that by taking 𝑚 = 1, 𝑤1 = 1, and 𝑘1 =
𝑓(𝑥𝑛 , 𝑦𝑛), we get the familiar Euler formula𝑦𝑛+1 = 𝑦𝑛ℎ𝑓(𝑥𝑛 , 𝑦𝑛) Hence Euler's method is said to be a first-order 

RungeKatta method. The average in (5.1) is not formed willy-nilly, but parameters are chosen so that (5.1) agrees with a 

Taylor polynomial of degree 𝑚. As we saw in the preceding section, if a function𝑦(𝑥) possesses 𝑘 + 1 derivatives that 

are continuous on an open interval containing 𝑎and 𝑥then we can write 

𝑦(𝑥) = 𝑦(𝑎) + 𝑦′(𝑎)
𝑥 − 𝑎

1!
+ 𝑦′′(𝑎)

(𝑥 − 𝑎)2

2!
+ ⋯ + 𝑦(𝑘+1)(𝑐)

(𝑥 − 𝑎)𝑘+1

(𝑘 + 1)!
, 

where 𝑐 is some number between 𝑎 and 𝑥.If we replace 𝑎 by 𝑥𝑛 and 𝑥 by𝑥𝑛+1 = 𝑥𝑛 + ℎ, then the foregoing formula 

becomes 

𝑦(𝑥𝑛+1) = 𝑦(𝑥𝑛 + ℎ) = 𝑦(𝑥𝑛) + ℎ𝑦′(𝑥𝑛) +
ℎ2

2!
𝑦′′(𝑥𝑛) + ⋯ +

ℎ𝑘+1

(𝑘 + 1)!
𝑦(𝑘+1)(𝑐), 

where 𝑐 is now some number between 𝑥𝑛 and𝑥𝑛+1When 𝑦(𝑥) is a solution of 𝑦′ = 𝑓(𝑥, 𝑦) in the case 𝑘 = 1 and the 

remainder 
1

2
ℎ2𝑦′′(𝑐) is small, we see that a Taylor polynomial 𝑦(𝑥𝑛 + 1) = 𝑦(𝑥𝑛) + ℎ𝑦′(𝑥𝑛) of degree one agrees with 

the approximation formula of Euler's method 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦′𝑛 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛). 
 

6.Second Runga - Kutta's Method: 

To further illustrate (5.1), weconsider now a second-order RungeKatta procedure. This consists of findingconstants or 

parameters 𝑤1 , 𝑤2, 𝛼 and 𝛽 so that the formula 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑤1𝑘1 + 𝑤2𝑘2),                              (5.1) 

Where 𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛) 

𝑘2 = 𝑓(𝑥𝑛 + 𝛼ℎ, 𝑦𝑛 + 𝛽ℎ𝑘1), 
agrees with a Taylor polynomial of degree two. For our purposes it suffices to say that this can be done whenever the 

constants satisfy 

𝑤1 + 𝑤2 = 1, 𝑤2𝛼 =
1

2
,           and     𝑤2𝛽 =

1

2
(6.1) 

This is an algebraic system of three equations in four unknowns and has infinitelymanysolutions:  

𝑤1 = 1 − 𝑤2,                 𝛼 =
1

2𝑤2

,      𝑎𝑛𝑑  𝛽 =  
1

2𝑤2

, (6.2)   

where 𝑤2 ≠ 0 the choice 𝑤2 =
1

2
,yields 𝑤1 =

1

2
, 𝛼 = 1,and𝛽 = 1,so (5.1) becomes 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑘1 + 𝑘2), 

Where 

𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛)     and        𝑘2 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘1). 

 Since 𝑥𝑛 + ℎ = 𝑥𝑛+1 and 𝑦𝑛 + ℎ𝑘1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛), the foregoing result is rec-ognized to be the improved Euler's 

method.[ 2,p345] 

 

7.Fourth-Order Runga - Kutta's Method: 

The fourth-order Runge-Kutta method is obtained from the Taylor series along the same lines as the second-order 

method. Since the derivation is rather long and not very instructive, we skip it. The final form of the integration formula 

again depends on thechoice of the parameters; that is, there is no unique Runge-Kutta fourth-order formula.The most 

popular version, which is known simply as the Runga - Kutta's method, entailsthe following sequence of operations : 

𝐾1 = ℎ𝐹(𝑥, 𝑦) 

𝐾2 = ℎ𝐹(𝑥 +
ℎ

2
, 𝑦 +

𝐾1

2
) 

𝐾3 = ℎ𝐹(𝑥 +
ℎ

2
, 𝑦 +

𝐾2

2
) 

𝐾4 = ℎ𝐹(𝑥 + ℎ, 𝑦 + 𝐾3) 
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𝑦(𝑥 + ℎ) = 𝑦(𝑥) +
1

6
(𝐾1 + 𝐾2 + 𝐾3 + 𝐾4) 

The main drawback of this method is that it does not lend itself to an estimate of the truncation error. Therefore, we 

must guess the integration step size ℎ, or determine it by trial and error. In contrast, the so-called adaptive methods can 

evaluate the truncation error in each integration step and adjust the value of ℎ accordingly (but at a higher cost of 

computation).[ 12, p260] 

 

8.Runga-Kutta Approximations for EquationsSubject to Initial Conditions: 

The Runga - Kutta's method was introduced to approximate the solution to a first-order differential equation. It can also 

be used to estimate the solution of a second order differential equation by expressing it as two first-order equations.  

For 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 𝑓(𝑥, 𝑦, 𝑦′)                                           (8.1) 

constrained by the initial conditions 

𝑦(𝑥0) = 𝑦0 

𝑦′(𝑥0) = 𝑦′0 

we define the first-order differential equation for 𝑦(𝑥) 

𝑦′(𝑥) ≡ 𝑤(𝑥)                                                                                         (8.2) 

With this definition, the second order differential equation for 𝑦(𝑥) given in eq. can be written as a first order equation 

for 𝑤(𝑥): 

The initial conditions for 𝑦(𝑥) become 

𝑦(𝑥0) = 𝑦0 

𝑤(𝑥0) = 𝑤0 = 𝑦′0 

The Runga - Kutta's method for solving a second order differential equation involves defining two sets of Runga-Kutta 

parameters, 𝑅 and 𝑆. With the values of 𝑦0 and 𝑤0 given by initial conditions, we determine the value of 𝑅1. With 𝑅1 

we find 𝑆1. Then 𝑆1 ⇒ 𝑅2 ⇒ ⋯ ⇒ 𝑅4 ⇒ 𝑆4 

 we begin with 

𝑅1 = 𝑦′(𝑥0)ℎ = 𝑤(𝑥0)ℎ 

𝑆1, the Runga -Kutta parameter for the first-order equation for 𝑤(𝑥)given  is 

𝑆1 = 𝐺(𝑥0, 𝑦0 , 𝑤0)ℎ = [𝑓(𝑥0, 𝑦0, 𝑤0) − 𝑃(𝑥0)𝑤0 − 𝑄(𝑥0)𝑦0]ℎ 

From these, we determine 

𝑅2 = (𝑤0 +
1

2
𝑆1) ℎ 

and 

 

𝑆2 = 𝐺 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑅1, 𝑤0 +

1

2
𝑆1) ℎ

= [𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑅1, 𝑤0 +

1

2
𝑆1) − 𝑃 (𝑥0 +

1

2
ℎ) (𝑤0 +

1

2
𝑆1) − 𝑄 (𝑥0 +

1

2
ℎ) (𝑦0 +

1

2
𝑅1)] ℎ 

Then 

𝑅3 = (𝑤0 +
1

2
𝑆2) ℎ 

 

and 

𝑆3 = 𝐺 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑅2, 𝑤0 +

1

2
𝑆2) ℎ

= [𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑅2, 𝑤0 +

1

2
𝑆2) − 𝑃 (𝑥0 +

1

2
ℎ) (𝑤0 +

1

2
𝑆2) − 𝑄 (𝑥0 +

1

2
ℎ) (𝑦0 +

1

2
𝑅2)] ℎ 

Then  

𝑅4 = (𝑤0 + 𝑆3)ℎ 

and 

𝑆4 = 𝐺(𝑥0 + ℎ, 𝑦0 + 𝑅3, 𝑤0 + 𝑆3)ℎ = [𝑓(𝑥0 + ℎ, 𝑦0 + 𝑅3, 𝑤0 + 𝑆3) − 𝑃(𝑥0 + ℎ)(𝑤0 + 𝑆3) − 𝑄(𝑥0 + ℎ)(𝑦0 + 𝑅3)]ℎ 

From these parameters, we obtain 

𝑦(𝑥) = 𝑦′(𝑥0 + ℎ) = 𝑦0 +
1

6
[𝑅1 + 2𝑅2 + 2𝑅3 + 𝑅4] 

𝑤(𝑥) = 𝑦′(𝑥0 + ℎ) = 𝑤0 +
1

6
[𝑆1 + 2𝑆2 + 2𝑆3 + 𝑆4]         [10, p273-274] 

 

Example (8.1): 

 Runga -Kutta approximations for an equation subject to initialconditions 

We again consider 

𝑦′′ − 2𝑥𝑦′ − 𝑦 = 𝑦2𝑒−𝑥2
 

subject to 

𝑦(0) = 𝑦0 = 1 

𝑦′(0) = 𝑤0 = 0 
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the solution to which is 

𝑦(𝑥) = 𝑒𝑥2
 

From this solution, we have the exact values 

 

𝑦(0.50) = 𝑒(0.50)2
= 1.28403 

and 

𝑤(0.50) = 𝑦′(0.50) = 2(0.50)𝑒(0.50)2
= 1.28403 

 

The corresponding pair of first-order equations for ea. 7.6a are 

𝑦′(𝑥) = 𝑤(𝑥) 

and 

𝑤′ = 𝑦2𝑒−𝑥2
+ 2𝑥𝑤 + 𝑦 

 

With 𝑥0 = 0  and ℎ = 0.5, the 𝑅  and 𝑆  parameters are  

𝑅1 = 𝑤0ℎ = 0 

𝑆2 = [(𝑦0 +
1

2
𝑅1)2𝑒−(𝑥0+

1

2
ℎ)

2

+ 2 (𝑥0 +
1

2
ℎ) (𝑤0 +

1

2
𝑆1) + (𝑦0 +

1

2
𝑅1)] ℎ = 1.09471 

𝑅3 = (𝑤0 +
1

2
𝑆2) ℎ = 0.27368 

 

𝑆3 = [(𝑦0 +
1

2
𝑅2)2𝑒−(𝑥0+

1

2
ℎ)

2

+ 2 (𝑥0 +
1

2
ℎ) (𝑤0 +

1

2
𝑆2) + (𝑦0 +

1

2
𝑅2)] ℎ = 1.29381 

 

𝑅4 = (𝑤0 + 𝑆3)ℎ = 0.64691 

 

𝑆4 = [(𝑦0 + 𝑅3)2𝑒−(𝑥0+ℎ)2
+ 2(𝑥0 + ℎ)(𝑤0 + 𝑆3) + (𝑦0 + 𝑅3)] ℎ = 1.91545 

Then  

 

𝑦(0.50) ≃ 𝑦0 +
1

6
[𝑅1 + 2𝑅2 + 2𝑅3 + 𝑅4] = 1.28238 

and 

 

𝑤(0.50) ≃ 𝑤0 +
1

6
[𝑆1 + 2𝑆2 + 2𝑆3 + 𝑆4] = 1.28208 

 

To develop a multiple step Runga -Kutta process, we take ℎ = 0.25 and apply the above process to find 𝑦(0.25) and 

𝑤(0.25) Then setting 𝑥0 = 0.25 and 𝑦0 = 0.25 and applying the Runge-Kutta method to find 𝑦(0.25)and 𝑤(0.25) we 

obtain 

𝑦(0.25) ≃ 1.28382 

And 

𝑦(0.25) ≃ 1.28378                              [10, p275] 

 

 

 

9.MATLAB(New Mathematical Technique): 

is a powerful language for technical Computing The name MATLAB Stands for matrix laboratory because its basic data 

element is matrix.MATLAB Can be used for math Computations modeling and simulation data analysis and processing 

visualization and graphic and algorithm develpmcut.MATLAB is widely used in universities and colleges in 

introduction and advanced courses in mathematics and especially engineering. MATLAB program has tools that. Can 

be used be solve common problems. [1] 

 

𝐢.Solve Part Differential Equation with MATLAB: 

The MATLAB partial differential equation solver 𝑝𝑑𝑒𝑝𝑒 initial boundary value problems for systems of Parabolic and 

elliptic part differential equation in the one space variable and time . there must be at lead on parabolic equation in the 

system. The 𝑝𝑑𝑒𝑝𝑒 solver converts the Pdf to ode using a second order accurate spatial discretization based on a set of 

nodes specified by the use. [19] 

 

𝐢𝐢.Finding Explicit Solutions: 

MATLAB has an extensive library of functions for solving ordinary differential equations. In these notes, we will only 

consider the most rudimentary.[11,p1] 
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𝐢𝐢𝐢.First Order Equation: 

Though MATLAB is primarily a numeric package, it can certainly solve straightforward differential equations 

symbolically[11] Suppose, for example, that we want to solve the first order differential equation 

𝑦′(𝑥) = 𝑥𝑦. 
We can use MATLAB’s built-in ( ).The input and output for solving this problem in MATLAB is given below . 

>> 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒(′𝐷𝑦 = 𝑦∗𝑥′, ′𝑥′) 

𝑦 = 𝐶1∗exp (1/2∗𝑥∧2) 

Notice in particular that MATLAB uses capital 𝐷 to indicate the derivative and requires that the entire equation appear 

in single quotes. MATLAB takes t to be the independent variable by default, so here must be explicitly specified as the 

independent variable. Alternatively,if you are going to use the same equation a number of times, you might choose to 

define it as a variable, 𝑒𝑞𝑛1 

>> 𝑒𝑞𝑛1 =′ 𝐷𝑦 = 𝑦∗𝑥′ 
𝑒𝑞𝑛1 = 

𝐷𝑦 = 𝑦 ∗ 𝑥 

>> 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒(𝑒𝑞𝑛1, ′𝑥′) 

𝑦 = 𝐶1∗exp (1/2∗𝑥∧2) 

To solve an initial value problem, say, equation () with 𝑦(1) = 1, use 

>> 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒(𝑒𝑞𝑛1,′ 𝑦(1) = 1′, ′𝑥′ 

𝑦 = 1/𝑒𝑥𝑝 (
1

2
)

∗

exp (1/2∗𝑥∧2) 

Or 

>> 𝑖𝑛𝑖𝑡𝑠 =′ 𝑦(1) = 1′; 
>> 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒(𝑒𝑞𝑛, 𝑖𝑛𝑖𝑡𝑠, ′𝑥′) 

𝑦 = 1/𝑒𝑥𝑝 (
1

2
)

∗

exp (1/2∗𝑥∧2) 

Now we’ve solved the ODE, suppose we want to plot the solution to get a rough idea of its behavior. We run 

immediately into two minor difficulties: (1) our expression for𝑦(𝑥) isn’t suited for array operations (.∗ , ./, .∧ ) and (2) as 

MATLAB returns it, is actually a symbol (a symbolic object). The first of these obstacles is straightforward to fix, 

using𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒( ). 
 

For the second, we employ the useful command𝑒𝑣𝑎𝑙( ), , which evaluates or executes text strings that constitute valid 

MATLAB commands. Hence, we can use 

≫ 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(0,1,20); 
>> 𝑧 = 𝑒𝑣𝑎𝑙(𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒(𝑦)); 

>> 𝑝𝑙𝑜𝑡(𝑥, 𝑧) 

You may notice a subtle point here, that evaluates strings (character arrays), and , as we have defined it, is a symbolic 

object. However, vectorize converts symbolic objects into strings. 

 

𝐢𝐯.Second and Higher Order Equations: 

Suppose we want to solve and plot the solution to the second order equation 

𝑦′′(𝑥) + 8𝑦′(𝑥) + 2𝑦(𝑥) = cos(𝑥) ;                     𝑦(0) = 0, 𝑦′(0) = 1 

The following (more or less self-explanatory) MATLAB code suffices: 

>> 𝑒𝑞𝑛2 =′ 𝐷2𝑦 + 8∗𝐷𝑦 + 2∗𝑦 = cos(𝑥)′ ; 
>> 𝑖𝑛𝑖𝑡𝑠2 =′ 𝑦(0) = 0, 𝐷𝑦(0) = 1′; 

>> 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒(𝑒𝑞𝑛2, 𝑖𝑛𝑖𝑡𝑠2, ′𝑥′) 

𝑦 = 

1/65∗cos (𝑥) + 8/65∗sin (𝑥) + (−1/130 + 53/1820 ∗ 14^(1/2))∗exp ((−4 + 14^(1/2))∗𝑥) − 1/1820 ∗ (53
+ 14^(1/2))∗14^(1/2)∗exp (−(4 + 14^(1/2))∗𝑥) 

>> 𝑧 = 𝑒𝑣𝑎𝑙(𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒(𝑦)); 
>> 𝑝𝑙𝑜𝑡(𝑥, 𝑧)                             [11,p2-3] 

 

10.Calculation of the Second order Ordinary Differential Equations Using Runga - Kutta's Method by A New 

Mathematical Technique : 

Example(10.1): 

Using Runga - Kutta's method solve   𝑦′′ = 𝑥𝑦′2 − 𝑦2 for 𝑥 = 0.2 correct to 4 decimal places initial conditions   

𝑦(0) = 1, 𝑦′(0) = 0 

Solution: 

ℎ = 0.2 − 0 = 0.2                      , 𝑥0 = 0,                 𝑦0 = 1,                   𝑦′0 = 0 

let 𝑦′ = 𝑧               then 𝑦′0 = 𝑧0 = 0 

𝑦′ = 𝑧 = 𝑓(𝑥, 𝑦, 𝑧) 

𝑦′′ = 𝑧′ = 𝑥𝑧2 − 𝑦2 

𝑧′ = 𝑔(𝑥, 𝑦, 𝑧) = 𝑥𝑧2 − 𝑦2 

𝐾1 = ℎ𝑓(𝑥0, 𝑦0, 𝑧0) = 0.2(𝑧0) = 0.2(0) = 0 
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𝐿1 = ℎ𝑔(𝑥0, 𝑦0, 𝑧0) = ℎ𝑔(0,1,0) = 0.2((0)(0) − (12)) = 0.2(−1) = −0.2 

 

𝐾2 = ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

𝐾1

2
, 𝑧0 +

𝐿1

2
) = 0.2𝑓(0.1,1, −0.1) = 0.2(−0.1) = −0.02 

𝐿2 = ℎ𝑔 (𝑥0 +
ℎ

2
, 𝑦0 +

𝐾1

2
, 𝑧0 +

𝐿1

2
) = ℎ𝑔(0.1,1, −0.1) = 0.2[(0.1)(−0.12) − 12] = −0.1998 

𝐾3 = ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

𝐾2

2
, 𝑧0 +

𝐿2

2
) = ℎ𝑓(0.1,0.99, −0.999) = 0.2(−0.0999) = −0.01998 = −0.02 

 

𝐿3 = ℎ𝑔 (𝑥0 +
ℎ

2
, 𝑦0 +

𝐾2

2
, 𝑧0 +

𝐿2

2
) = 0.2𝑔(0.1,0.99, −0.0999) = −0.1958 

 

𝐾4 = ℎ𝐹(𝑥0 + ℎ, 𝑦0 + 𝐾3, 𝑧0 + 𝐿3) = 0.2(−0.1958) = −0.03916 = −0.0392 

 

𝐿4 = ℎ𝑔(𝑥0 + ℎ, 𝑦0 + 𝐾3, 𝑧0 + 𝐿3) = 0.2𝑔(0.2,0.98, −0.1958) = −0.1905 

 

𝑦(𝑥 + ℎ) = 𝑦0(𝑥) +
1

6
(𝐾1 + 𝐾2 + 𝐾3 + 𝐾4) 

𝐾 =
1

6
(0 + 2(−0.02) + 2(−0.02) ± 0.0392) = −0.0199 

𝑦 = 𝑦0 + 1 − 0.0199 = 0.98 = 0.2 

𝐿 =
1

6
(𝐿1 + 2𝐿2 + 2𝐿3 + 𝐿4) =

1

6
(−0.2 = 2(−0.1998) + 2(−0.1958) ± 0.1905) = −0.1970 

𝑧 = 𝑧0 + 𝐿 = 0 − 0.1970 

𝑦′ = 𝑧 = −0.1970 

Solution: 

%y''=x*y'^2-y^2 

%let w''=x*w'^2-w^2 and w'=z 

Clc 

clear all 

h=0.2; 

t(1)=0; 

z(1)=0; 

w(1)=1; 

f = @(t,w,z) (z); 

g = @(t,w,z) (t*z^2-w^2); 

forI =1:40 

L1 = h*g(t,w,z); 

k1 = h*f(t,w,z); 

L2 = h*g(t+h/2,w+k1/2,z+L1/2); 

k2 = h*f(t+h/2,w+k1/2,z+L1/2); 

L3 = h*g(t+h/2,w+k2/2,z+L2/2); 

k3 = h*f(t+h/2,w+k2/2,z+L2/2); 

L4 = h*g(t+h,w+k3,z+L3); 

k4 = h*f(t+h,w+k3,z+L3); 

 

z=z+(L1+2*L2+2*L3+L4)/6; 

w=w+(k1+2*k2+2*k3+k4)/6; 

t=t+h; 

      fprintf('i=%8.0f, t=%8.2f, w=%8.6f, z=%8.6f\n', I, t,w,z)      plot(t,z,'-*r') 

hold on 

plot(t,w,'-ob') 

end 

 

Results: 

i=       3, t=    0.60, w=0.833498, z=-0.508421 

i=       4, t=    0.80, w=0.722980, z=-0.587046  

i=       5, t=    1.00, w=0.602450, z=-0.609743 

i=       6, t=    1.20, w=0.481994, z=-0.588975 

i=       7, t=    1.40, w=0.368612, z=-0.541798 

i=       8, t=    1.60, w=0.266023, z=-0.483168 

i=       9, t=    1.80, w=0.175418, z=-0.423260  

i=      10, t=    2.00, w=0.096418, z=-0.367768  
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i=      11, t=    2.20, w=0.027843, z=-0.319251 

i=      12, t=    2.40, w=-0.031795, z=-0.278427  

i=      13, t=    2.60, w=-0.084024, z=-0.245070  

i=      14, t=    2.80, w=-0.130277, z=-0.218549 

i=      15, t=    3.00, w=-0.171847, z=-0.198113  

i=      16, t=    3.20, w=-0.209877, z=-0.183032 

i=      17, t=    3.40, w=-0.245371, z=-0.172651 

i=      18, t=    3.60, w=-0.279211, z=-0.166405 

i=      19, t=    3.80, w=-0.312175, z=-0.163815  

i=      20, t=    4.00, w=-0.344952, z=-0.164472  

i=      21, t=    4.20, w=-0.378156, z=-0.168022 

i=      22, t=    4.40, w=-0.412332, z=-0.174147 

i=      23, t=    4.60, w=-0.447966, z=-0.182564 

i=      24, t=    4.80, w=-0.485492, z=-0.193009 

i=      25, t=    5.00, w=-0.525289, z=-0.205246 

i=      26, t=    5.20, w=-0.567695, z=-0.219065 

i=      27, t=    5.40, w=-0.613008, z=-0.234287  

i=      28, t=    5.60, w=-0.661494, z=-0.250772 

i=      29, t=    5.80, w=-0.713395, z=-0.268421 

i=      30, t=    6.00, w=-0.768937, z=-0.287171 

i=      31, t=    6.20, w=-0.828336, z=-0.306995 

i=      32, t=    6.40, w=-0.891808, z=-0.327892 

i=      33, t=    6.60, w=-0.959569, z=-0.349885 

i=      34, t=    6.80, w=-1.031841, z=-0.373007 

i=      35, t=    7.00, w=-1.108855, z=-0.397305 

i=      36, t=    7.20, w=-1.190851, z=-0.422826 

i=      37, t=    7.40, w=-1.278079, z=-0.449626  

i=      38, t=    7.60, w=-1.370801, z=-0.477760 

i=      39, t=    7.80, w=-1.469289, z=-0.507286 

i=      40, t=    8.00, w=-1.573828, z=-0.538262 

 

 
Fig No(10.1):Calculating using Runga - Kutta's by MATLAB 

 

Results : 

The possibility of solving the ordinary equations using Runga - Kutta's method by a new mathematical technique , 

reducing errors , speed and accuracy of the solution . 
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