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Abstract

The vast majority of the multivariate exponential distributions arise in the reliability context
one way or another. When we talk of reliability, we have in mind the failure of an item or death
of a living organism. We especially think of time elapsing between the equipment being put into
service and its failure. In the bivariate or multivariate context, we are concerned with
dependencies between two failure times, such as those of two components of an electrical,
mechanical, or biological system.

Bivariate and multivariate exponential distributions have served as friendly “alternative arena”
for those involved in theoretical and/or applied aspects of multivariate distributions. The
volume on the exponential distribution prepared by Balakrishnan and Basu (1995) provides
ample testimony to this fact.

In this article, a characterization of the exponential distribution based on the properties of the
bivariate exponential is discussed. The result forms a sort of multivariate analogue of the
characterization of the bivariate exponential distribution.

Although different forms of bivariate exponential distributions such those of Gumbel (1960),
Freund (1961), Marshall and Olkin (1967) and Block and Basu (1974) exist in literature, how far
these distributions can be characterized by properties analogous to the results in the bivariate
exponential distribution.

At the beginning we present a detailed discussion on bivariate exponential distributions,
describing many different forms that have been proposed in the literature, their properties and
applications, and inferential issues. Next, we summarize various developments on multivariate
exponential distributions. It should be mentioned that although this chapter includes numerous
results from the voluminous literature on this topic, it can by no means be regarded as an
exhaustive coverage of this active area of research.

Key words and phrases: characterization, multivariate exponential and bivariate exponential
distributions,
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Bivariate Exponential Distributions

The term bivariate exponential usually refers to bivariate distributions with both marginal
distributions being exponential (BEDs). It is mostly the case that these are standard exponential
distributions, but location and scale parameter can be easily introduced, if needed, through
appropriate linear transformations.

First we mention a simple special case of the bivariate gamma distributions. The special case of
a =2, with a reparameterization, yields the joint density function

), X1, %3 >0

6,0, 2+/p010;x1x; 01x1 + 0x,
Px,,x, (xl; xz) = I exp (— i

1—p0 1—p 1-p

2j
Where I,(z) = X732, (Zi]') is the well-known modified Bessel function of the first kind of order

zero. Note that X; and X, are mutually independent if and only if p =0. This is the so-called
Moran-Downton bivariate exponential distribution.

There are now a number of different kinds of bivariate exponential distributions. However, it
was only in 1960 that a pioneering paper, specifically devoted to bivariate exponential
distributions.

We now list some systems of bivariate exponential distributions, starting with three systems
adumbrated by Gumbel (1960).

Gumbel’s Type | Bivariate Exponential Distribution
The joint cumulative distribution function is

H(x,y) =1—e % — eV + e~ x+y+6xy), .y =200<e< 1.
Characterizations

Along with the bivariate Lomax distribution and bivariate finite range distribution, Gumbel’s
type | bivariate exponential distribution can be characterized through

e Constant product of bivariate mean remaining (residual) lives and hazard rates
e Constant coefficient of variation of bivariate residual lives.
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Estimation Method

By introducing scale parameters to the marginal distributions, the survival function
corresponding to above JCD after relabeling © by o becomes

ax
4 y}’ x,y>00,0,>00<a<l

s X
A = ep{-g-= 5= g

Kotz et al. (2003) derived the distributions of T; = min(X,Y) and T, = max(X,Y). In particular,

it was shown that
E(Ty) = el/e\/gll - <b<\/%l
E(Ty) =2 - el/e\/gll - ¢(\/%l

Further, it was shown that E(T,) is almost linearly increasing in p. Franco and Vivo (2006)

And that

discussed log-concavity of the extremes. The distribution that has a log-concave density has an
increasing likelihood ratio.

Gumbel’s Type Il Bivariate Exponential Distribution

Gumbel’s type Il bivariate exponential distribution is simply an F-G-M model with exponential
marginals. The density function is given by

h(x,y) =e™*Y{1+ a(2e™ —1)(2e™ — 1)}, Iz < 1;

Bilodeau and Kariya (1994) observed that the density functions of both type | and type Il are of
the form

h(x,y) = v1v29(v1x,v2y; 0)e <772
Fisher Information

Nagaraja and Abo-Eleneen (2002) derived expressions for the elements of the Fisher
information matrix for the three elements of the Gumbel type Il bivariate exponential
distribution. They observed that the improvement in the efficiency of the maximum likelihood
estimate of the mean of X due to availability of the covariate values as well as the knowledge
of the nuisance parameters is limited for this distribution.
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Gumberl’s Type lll Bivariate Exponential Distribution

The joint cumulative distribution function is
Hx,y)=1—e*—e Y +exp {—(xm +ym)1/m} i Bmyz20mz 1
The survival function is
A(x,y) = exp {—(x™ + y™)'/m}
The corresponding joint density function is

h(x,y) = (e +ym) 2+ Clmgm=tym=1 {m 4 ymylmim=1)exp {—(xm + ym)'/m},
x,y=0m>1.

If m=1 X and Y are mutually independent. Lu and Bhattacharyya (1991) have studied this
bivariate distribution in detail and in particular provided several inferential procedures for this
model.

Freund’s Bivariate Distribution

This distribution is often given the acronym BEE (bivariate exponential extension) because it is
not a bivariate exponential distribution in the traditional sense, as the marginals are not
exponentials.

Formula of the Joint Density

The joint density function is

ap exp[—(a + B — B)x — By| forx <y

h(x,y) = {dﬂ exp[—(a + B — &)y — dx] for xZy

where x,y = 0 and the parameters are all positive

Formula of the Cumulative Distribution Function
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The joint cumulative distribution function is

-

Hety) = 1@ +; zexp[—(a+ B8 —B)x - py] + ﬁexp[—(a +B)y] forx<y
—y T exp[ (& + B —d)y—dz] + %exp[—(a +pB)x] forx=>y

where x,y = 0

Univariate Properties

The marginal distributions are not exponential, but they are mixtures of exponentials. Hence,
the joint density function is often known as Freund’s bivariate exponential extension, or a
bivariate exponential mixture distribution, as it is called by Kotz et al. (2000, p. 356). The
expression for the marginal density f{x) is

(a—a)(a+ﬁ) e—(@+p) ap —dx
flx) = Z+F— ﬁy+a+ﬁ—de

Provided a + 8 # &, and naturally a similar expression for g(y) holds wih 8 and § changed to

a and &, respectively. The special case of a + § = & gives f(x) = (dBx + a)e %,

a+p &% +2af+p?
a(a+pB) a2(a+p)?

The mean and variance of this distribution are respectively.

Correlation Coefficient
Pearson’s correlation coefficient is given by
¢ — ap
J(dz + 2apf + B2)(B? + 2ap + a?)

Which is restricted to the range —% to1l

Joint Moment Generating Function
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The joint m.g.fis

-, -

a’ﬁ N a’B
a—:S B—t

M(s,t)=(a+p—s—t)! ]

Marshall and Olkin’s Bivariate Exponential Distribution

It is one of the most widely studied bivariate exponential distributions. The acronym BVE is
often used in the literature to designate this distribution.

Formula of the Cumulative Distribution Function
The cumulative distribution function is

H(x,y) = exp[—y1x — y2y —yizmax(x,y)], xy=0

Where all ¥’s are positive.

Formula of the Joint Density Function

This takes slightly different forms depending on whether x or y is bigger:

Y2(r1 + v12) exp[—(y1 + v12)x — v2¥] forx>y,
h(x,y) =v1(r2 + v12) exp[—v1x + (v2 + v12)Y] fory>x,
Singularity along the diagonal forx=y

The amount of probability for the singular part is y12/(y1 + ¥2 + ¥12)- The singularity in this
case is due to the possibility of X exactly equaling Y. in the reliability context, this corresponds
to the simultaneous failure of the two components.

Univariate Properties
Both marginal distributions are exponential.
Conditional Distribution

The conditional density of Y given X=x is
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Y1(¥2 + ¥12) e ~V2y—Y12-2)
h(y\x) ={ v1+V12
Y2 "2y, fory < x.

fory > x,

Correlation Coefficients

Pearson’s product-moment correlation coefficient is y15 /(1 + V2 + V12)-

Characterizations

Block (1977) proved that X and Y with exponential marginals have Marshall and Olkin’s
bivariate exponential distribution if and only if one of the following two equivalent conditions
holds:

e min(X, Y ) has an exponential distribution,
e X —Y and min(X, Y) are independent.

Other Properties
e The joint moment generating function is

(v +s+ )1 +v12) V2 + ¥12) + y12St

M(s,t) =
Y1+ Vi2— )2+ V2 —t)

e Min (X,Y) is exponential and Max (X,Y) has a survival function given by

e—(}’1+}’12)x o e—(}’2+}’12)x e e—(Y1+Y2+Y12)x’ x>0

e The aging properties of minimum and maximum statistics were discussed by Franco and
Vivo (2002), who showed that max(X, Y) is a generalized mixture of three exponential
components. The distribution is neither ILR (increasing likelihood ratio) nor DLR
(decreasing likelihood ratio). Because the minimum statistic is exponentially distributed,
it is therefore both ILR and DLR.

e The distribution is not infinitely divisible except in the degenerate case when y; =0 (or
¥, = 0) or when y,, =0 (in the latter case, X and Y are independent).
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Friday and Patil’s Bivariate Exponential

Friday and Patil (1977) proposed a distribution that subsumes both Freund’s and Marshall and
Olkin’s distributions with joint survival function

H(x,y) = y(Hy(x,y) + (1 = y)Hp(x,y)

Where H, is the survival function corresponding to Freund’s distribution, and Hy is the singular
distributionexp[—(a + ) max(x, y)]. More explicitly, we have

6,exp[—(a+ B —B)x— Byl + (1 -6 exp[-(a+ Byl  forx<y,

A= {92exp[—ax' —(@+f-apyl+A-6expl-(@+pa]  forxzy,

Where 6; =ya(a+p—£)"46, =yB(a+pf —d) L,and0 <y < 1. This distribution is
another one that has the lack of memory property. It is sometimes denoted by BEE.

Friday and Patil also showed that only two independent standard exponential variates are
needed to generate a pair (X, Y ) with their distribution, and thus the same is true for Freund’s
and Marshall and Olkin’s distributions. They then examined the computational efficiency of
their scheme.

The model of Platz (1984) is another one that includes both Marshall and Olkin and Freund
models and in addition one-out-of-three and two-out-of three systems with identical
components.

The maximum is either a generalized mixture of three or fewer exponentials or a mixture of
gamma and exponentials.

Raftery’s Bivariate Exponential

In its general form, Raftery’s (1984,1985) scheme of obtaining a bivariate distribution with
exponential marginal is given by

{X =1 -po—pr1)U+ LW
Y =1 =po1 —p1)V + LW

Where U,V,W are independent and exponentially distributed, and in addition, they are
independent of [;. [;and I, are each either 0 or 1, with probabilities as set out below

| L=0 I=I

;=0 | Py Py
Li=1 | Py Ppu
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Raftery showed the correlation to be 2p;;-(poi+pi1)(piotpi1)- There is also an extension of the
model to permit negative correlation. Raftery then paid special attention to the following cases

First Special Case

This set pg;=0, pip=1I-py1, so that

{ X=W
Y = (1_p11)V+12W

And the distribution in this case is a mixture of independence and weighted linear combination.

Formula of the Cumulative Distribution Function

The joint survival function that corresponds to first special case with 8 = p;; is

1-6 - 5 -y
o o) . x/(1—5) {ey /(1-8) = /(1—5)} forx=>y,
H(x ) 1+48
: ., 1=68 -y a-e) _ 7%

Moran-Downton Bivariate Exponential Distribution

This bivariate exponential distribution was first introduced by Moran (1967) and then
popularized by Downton (1970). In fact, it is a special case of Kibble’s bivariate gamma
distribution. Many authors simply call it Downton’s bivariate exponential distribution.

Formula of the Joint Density

The joint density function is

1 X+ 3y 2./xyp
h(x;}’)=1_peXp['—1_p IO<1_p ’ x:}’ZO

where /j is the modified Bessel function of the first kind of order zero.
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Formula of the Cumulative Distribution Function

Expressed as an infinite series, the joint cumulative distribution function is

_ _ - © PN W m g
Hx,y)=(1-e*)(1-e)+ Zj=oij ()L (v)xye xy)

for x,y = 0, where the Lgl)are laguerre polynomials.

Univariate Properties
Both marginal distributions are exponential.
Correlation Coefficients

The value p is in fact Pearson’s product-moment correlation. As to the estimation of p, Al-Saadi
and Young (1980) obtained the maximum likelihood estimator, the method of moments
estimator, the sample correlation estimator, and the two bias-reduction estimators.

Balakrishnan and Ng (2001) proposed two modified bias-reduction estimators, p~5 and p~6, and
their jackknifed versions, p~5,Jand p~6,], respectively. They carried out an extensive simulation
study and found that both jackknife estimators reduce the bias substantially. Although p~6,J
seems to be the best estimator in terms of bias, it has a larger mean squared error. Overall, p~6
seems to be the best estimator, as it possesses a small bias as well as a smaller mean squared
error than that of p~6,J. For the bivariate as well as multivariate forms of the Moran—-Downton
exponential distribution, Balakrishnan and Ng (2001) studied the properties of estimators
proposed by Al-Saadi and Young (1980) and Balakrishnan and Ng (2001a). They also used these
estimators to propose pooled estimators in the multi-dimentional case and compared their
performance with maximum likelihood estimators by means of Monte Carlo simulations.

Conditional Properties

The regression E(Y\X=x) and the conditional variance are both linear in x.

Moment Generating Function
The joint moment generating function is

M(s,t) = [(1—s)(1—t) — pst]*

10
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Regression
The regression is linear and is given by

EY\X=x)=1+p(x—-1)

Cowan’s Bivariate Exponential Distribution
Formula of the Cumulative Distribution Function

The joint survival function is given by

H(x, y)—exp[ —(x+y++(x+y)?—4dnxy — 4xy)] xy=z0

For 0 < n < 1 obviously, scale parameters can be introduced into this model if desired.

Formula of the Joint Density

The joint density function is

)

x+y+ﬂ

1-
h(x,y) = {4nxy + S[S(x + y) + x? + y% + 2nxy]} exp [

283
whereS? = (x + y)? — 4nxy

Univariate Properties

Both the marginal distributions are exponential.

Correlation Coefficients

Pearson’s product-moment correlation coefficient is

2 1—9
-1 +5[1 + log(1 —n)]

Spearman’s correlation is

3 [_n_scl—n)lo -8B+
8+1 & YmroG-n-or

11
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Where & = /n(8 +1)

Conditional Properties

The conditional mean and standard deviation of Y, given X=x, are not of simple form, but
graphs of these functions have been given by Cowan (1987). A graph of E(Y\X=x) when the
marginal have been transformed to uniforms has also been presented by Cowan.

Arnold and Strauss’ Bivariate Exponential Distribution

The joint distribution was derived by Arnold and Strauss (1988).

Formula of the Joint Density

The joint density function is

h(xv y) = C(BB)ﬁl:BZe_ﬁlx—ﬂzy_ﬁlﬁzxy' X,y b O' ﬁi > 0(l = 1,2), B3 = 0'
where C(f3) = fooo 1i:u du. Alternatively, the density may be expressed as
3

h(x,y) = K exp{mxy — ax — by},

where, for convergence, we must have a, b > 0 and m < 0, and K is a normalizing constant.

Formula of the Cumulative Distribution Function

The survival function is

C(ﬂ3)e—.31X—Bzy—ﬁ132xy

B
(14 B1B3x)(1 + B2p5y)C ((1 5 3133,5)21 ¥ [;Zﬁgy))

H(x,y) =

Univariate Properties

Both marginal are not exponentials

12
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Correlation Coefficient

In this case, we have p < 0O,i.e., X and Y are negatively correlated.

Hayakawa’s Bivariate Exponential

Using a finite population of exchangeable two-component systems based on the indifference
principle, Hayakawa (1994) proposed a class of bivariate exponential distributions that includes
the Freund, Marshall and Olkin, and Block and Basu models as special cases. For an infinite
population, Hayakawa’s bivariate distributions can be written as

A(x,y) = f 7 (x, Y\®)dG(9),

Where H(x,y\®) can be decomposed into an absolutely continuous part H, and a singular part
Hg, and G is the distribution function of the parameter®. This class of distributions includes
mixtures of Freund’s, Marshall and Olkin’s, and Friday and Patil’s distributions.

Singpurwalla and Youngren’s Bivariate Exponential Distribution

Singpurwalla and Youngren (1993) introduced the following form of bivariate exponential
distribution.

Formula of the Cumulative Distribution Function

The joint survival function is given by

B \/1 —mmin(x,y) + m max(x,y) exp{—mmax(x,y)}

1+mx+y)

For x,y = 0, where m is a common parameter.
Formula of the Joint Density
The joint density function is

1 +mx){(1 —mx)? —m?y?} + {1 + m(x — y)}* — my(1 + mx)
{1+ m(x = »)Y/2{1 + m(x +y)}72

ke y) =mPe ™%

13
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on the sets of points x > y; on the set of points y > x, x is replaced by y and vice versa in the
expression above. The joint density is undefined on the line x = y, which is similar to Marshall
and Olkin’s bivariate exponential distribution.

Univariate Properties

Both marginal distributions are exponential.

Multivariate Exponential Distributions

In this section, various forms of multivariate exponential distributions and their generalizations
will be considered. These are natural extensions of the corresponding bivariate forms discussed
above.

First of all, by considering n independent and identically distributed k-variate exponential
random vectors with independent Exp(u,6;)(i =1, ...,k) components, Bordes, Nikulin and
Voinov (1997) have derived an UMVUE of the joint density function from the UMVUE of the
joint distribution function. They have also illustrated the usefulness of the UMVUE of the joint
density function in developing a chi-square goodness of fit for this model.

Freund’s Multivariate Exponential

Weinman (1996) extended Freund’s BED to the multivariate setting in the following way.
Suppose a system has K identical components with times to failure X;, ... ,.X}, they all have the
exponential density function

1 _x/
Px(x) = e %, x> 0,0, > 0.
0

It is further supposed that if £ components have failed (and not been replaced), the conditional
joint distribution of the lifetimes of the remaining k — fcomponents is that of independent
random variables, each having the density function

1 x/
px(x) = O, x>0,68,>0.

_e_
6,

In this case, clearly, 0 < X; <X, < - < Xxk then, Weinman has shown that the joint density
of X;,....Xiis then

14
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£ 1 =D Gin-x)),
Dxy,cy (K1) ooes X)) = 1_[56 i X =00<x; <x; < < xp

It is of interest to mention that the joint density function of progressively Type Il right censored
order statistics from an exponential distribution is a member of the family, the joint moment-
generating function is

* k-1 =1

E[et1X1+~"+thk] — %Z 1_1 1

i=0 1 =i+1

[270)

Where {tp(l), ...,tp(k)}is one of the k! Possible permutations of ¢,,...,#;, and Z;, denotes the

summation over all such permutations. The distribution is symmetrical in X;,...,.X} . for each
i(=1,2,...,k), we have

1 k-1
ELX] =7 ) 64
i=0

var(X) = [Z m62 +2 ZK,-Z itk — )6;6;],

and

k—

R DX (= L) W W)

The joint moment generating function of the ordered variable 0 < X; < X, < - < Xy, has the
relatively simple form

k-1 k 4
9.

¢

}=i=1

i=0

Marshall and Olkin’s Multivariate Exponential

Marshall and Olkin (1967) have generalized their MOBED, denoted by MOED, in the following
manner. In a system of k£ components, the distribution of times between “fatal shocks to the
combination {a;, ..., a,} of components is supposed to have an exponential distribution with

15
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mean 1/1 . The 2*-1 different distributions of this kind are supposed to be a mutually

aq,.,ayp

independent set.
The resulting joint distribution of lifetimes X7, ..., X; of the components is

F X1,00Xk (xll ey xk)

k
=expy— Z Aix;
i=1
_ Z . Zlil,izmax(xi1'xiz)
i1<iy

- Z Z Z Ay iy i, max(xy , Xy, X3,) — o0 — g emax(xy, ..., Xi)

i1 <iz<i3
This is also a mixed distribution, as in the bivariate case.

Arnold (1968) pointed out that estimation of the parameters A's by standard maximum
likelihood or moment methods is not simple. He suggested the following method of estimation
which exploits the singular nature of the distribution. Let

7 _{1 if Xo, = =Xq, <X; foralli #ay,..,a,
@@ (0 otherwise.

T
Given n independent observationsz —; (le, ...,Xk]-) (j =1, ...,n), each having the joint MOMED from
the result of joint distribution, the estimator of A4, 4,is, in an obvious notation,

The numerator and the denominator from above are mutually independent. The estimator is
unbiased and has variance

1

n(n o sy 1) Aai,...,ag{(n - 1)2' + Aalw-'af}'

Where 1 is the sum of A4, ,,’s overall possible sets {ay, ..., a,}. However, if the sample size is
not large, many of the estimators will be 0. In fact, for each Xj, only Z (at most) will not be 0, so
there must be at least (2k-1—n) estimators with 0 values.

The (k-1) dimensional marginal distributions are MOBED. Moreover, the functional equation

F(xg +t,..,x +t) =F(xq, .., x)F (L, ..., t)

16
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Is satisfied, and the only distributions with exponential marginal distributions that satisfy above
equation are the MOMED:s in resulting joint distribution.

A simplified version of MOMED is given by the survival function

k+1

Fx,.x. (X1, ., X)) = exp {—leixi =g MAX( Xy s X ) 8y Xihy = 0ihpgq 2 O,Z A=A
Symmetry corresponds to Ay = =Athat is, y; =4, -4, =0 (i=1,..,k—1) while

mutual independence corresponds to A4;,; = 0.

Block and Basu’s Multivariate Exponential

This model is an extension of the ACBED of Block and Basu (1974), to the multivariate case and
constitutes the absolutely continuous part of the MOMED, if X=(X,, ..., X>)" represents the joint
lifetime of kK components, the corresponding (k+1) parameter density function is

A F A T
Px(x) = “Tkﬂl |/1iFM(x), Xig > > %, b Fip#F o F i =12,k
=2

Where

K .
SR SN R S S0
M { L i i k+14(k) Hf=2(25=11ij+lk+1

And xq is max (xy, ...,Xg).

The failure times Xj,...,. X} are independent if A,—; = 0 the condition A; = - = A, implies
symmetry and it is equivalent to identical marginal of all the & components. The model in
parameter density function satisfies the lack of memory property, but the marginal are
weighted combinations of exponentials.

Let X},...,X, be a random sample from parameter density function. Let n;; denote the number
of observations with X; > max(x;,, ..., X;, ) the expected value of n;; is

Ai,
E[nil] - Z Z H A T A ¢
Q e tiy=1 1= k+1
The likelihood equations are
17
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Odlog L i, n—"mni
= —na + - -y Xi;=0
aAil : Ail + Ak?l Ail J-_-:Zl = ;
R W T
Olog L ’ (PR A
— = —nogg+ Y ————— =) Xpy; =0,
Ok 1 g ,; iy + Aks g i
Where a; = dloga iy=1 k+1
1 = aﬂk+1 )y L1 = 4y ey

Fisher information matrix

921
() = ((nly)) = ((Elaai(;iﬂ»’ ij=1,.k+1

ISSN: 2455-9210

Is positive definite in this case and \/ﬁ(i — A1) has asymptotic multivariate normal distribution

with mean vector 0 variance-covariance matrix I ~1(1).

Olkin and Tong’s Multivariate Exponential

Olkin and Tong (1994) studied an important subclass of MOMEDs. Let Uy,...,Ux, Vji,...,Vk and
W be independent exponential random variables with E[U;] = 1//11, E[V;] = 1//12 (i=

1,..,k) and E[W] = 1//10. Let K = (K, ..., Ki)Tbe a vector of non-negative integers with

k
ZKs=k: Ki 22K 21, Kyy ==k =0
s=1

For some r < k. For given K, let X(K) = (Xy,...,X;)"be a k-dimensional multivariate

exponential random variable defined by

min(U;,V, W), j=1,...K;
min(U;, Vo, W), j =K1, .., K + K,

min(U;, Vi, W), j=Kip wesKpog F 1,00k
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Note that the distribution of (Xy,...,X;)T belongs to a subclass of the MOMED family. The
latter, requires 2*-1 independent variables to generate a k-variance exponential distribution.

The univariate marginal distributions of X;’s are exponential with mean 1/(/10 + A+ A

The joint distribution of Xj’s is exchangeable when K=(k%,0, ...,O)T and also when K = (1, ...,1)7.
The components X; = min(Uj, V., W), j=1,..,nofX(,..1).

For a fixed but arbitrary k,A = (1y,14,4,)T and ¢, let K and K’ be two vectors satisfying above
equation. K>K’ where > denotes majorization order, then Olkin and Tong (1994) have
established that

Fga(t,....,t) = F g3(t, ..., t)

Moran and Downton’s Multivariate Exponential

Al-Saddi and Young (1982) generalized moran and Downton’s bivariate exponential distribution,
to the equicorrelated multivariate case as follows. Let Xi=25-"=1Yij where Y;;’s are

independent and identically distributed random variables with density function

'eiy/ (1—p)

e ; y>0i=1,..,k

i

1-p

Py; ) =

Let M have a geometric distribution with probability mass function
B[M=m]=(1-p)pm?, 0<p<l1, m=12,..

Then, conditional on M=m , the distribution of X; is gamma with probability density function

—Gix
_ 1-p)
m xm 1

M@=Q%J m-1°

and the joint unconditional density function of X=X}, ...,Xk)T is

px(x) = i PM =m] f[ﬁ(xi)

k
_ 91 Gk 1 p61x192x2 ...Hkxk> -
_(1_p)k—1exp{ 1_p;6ixi}sk( A= p)" , x>0 i=1,..,k,
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where 5;.(2) = X2, 2*/(iD*.

The marginal distribution of X; is exponential with parameter 6;(i = 1, ..., k). Nothing that /;(z)
the modified Bessel function of the first kind of order zero- is I,(z) = S,(z?/4) we observe
that the unconditional density function reduces readily to the bivariate Moran and Downton’s
density, the mixed moment of order (7, ..., 7¢) is

i B

rk . T .
: ey Z (r—N'p™(1-p) I | l i\ + 250 — 7))
E[Xll ."Xk ] B - 8{1952 BI:k i=1 (]l) {Zi:l(’rf _}{’)}|

jT=0 jk=o0
Where r = Y% _ 1, j =3%_, jo, and ry=jo=0. In particular, setting r,=r,=1 and r;=0, for i#s,t

we obtain

1+p
E[XSXt] = 9 Gt ’
S

s=1..,k—1, t=s+1,..,k

Which shows that each pair of random variables has correlation coefficient equal t p.

Raftery’s Multivariate Exponential

Raftery (1984) and O’Cinneide and Raftery (1989) studied a multivariate exponential
distribution which is defined as follows. Suppose that Y;,...,Y; and Z,, ..., Z,are independent
exponential (A) random variables and (J;,...,/;) is a random vector taking on values in
{0,1, ..., £}* with marginal

PTUi = 0] =l —T; andPr[]i =]] = T[l'j, i = 1,...,k, ] = 1,...,‘6’,
where T; = Zj;l m;j. let Zy = 0. then, the model for X}, ..., X is
X,-=(1—7tl-)Yi+Z]l-, =1, ..,k

The main properties of this model are similar to those of the multivariate normal distribution in
the sense that univariate marginal are exponential while bivariate marginal belong to Raftery’s
bivariate exponential distribution, given by

Xi=QA-n)Y,+LZ, i=1,.2
a linear combination of the underlying independent random variables. Here, Y1,Y,, and Z are
independent exponential (A) random variables, and /;’s (i=1,2) are binary 0-1 random variables
with
20
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Bl=1=n;, i=12 and Blh=LL=fl=p; &j=01
When ¢ = 1,p;; = B.[J; = J; = 1] and moreover
pij = COTT(XL',X]') = aij -+ ﬁij + TT; + T[j L 7Ti7'[j -1

with a;; =P [J; =J; =0]and B;j = B.[Ji =]; # 0] so that the correlation structure is
independent of the marginal distributions. Unfortunately, the dependence structure involves
(£ + 1)* — 1 parameters. Raftery (1984) has therefore recommended to constrain the bivariate
marginal distributions to be exchangeable.

In the bivariate case, Nagaraja and Baggs (1996) have discussed the joint and marginal
distributions of order statistics X1y = min(Xy,X;) and X(3) = max(Xy,X;) as well as some
reliability properties of these order statistics.

Krishnamoorthy and Parthasarathy’s Multivariate Exponential

A futher example of a multivariate exponential distribution can be obtained by taking v=2 in the
multivariate gamma distribution of Krishnamoorthy and Parthasarathy (1951); the joint
characteristic function is

E[ei(t1X1+~-+thk)] = |l — 2iRDt|_1

Where R is a correlation matrix, /; is an identity matrix of order k, and D,=Diag(t,,...,t). since
|I, — 2iRD,| is a polynomial in (1 — 2it,), ..., (1 — 2ity), the joint distribution of (Xj,.... Xy
can be expressed formally as a mixture of a finite number of x’-distributions.

By considering two independent copies of Krishnamoorthy and Parthasarathy’s multivariate
gamma variables of index % , and adding them, one could obtain a multivariate exponential

distribution. Kent (1983) has shown the equivalence of the distribution so obtained and the
distribution derived from considering the sojourn time vector of a birth-death process up to a
first passage time. Recall that in the univariate case, we have two derivations of exponential
distributions-one based on the lack of memory property which is equivalent to the waiting time
spent in a given state of continuous time Markov process before jumping into a new state, and
the other, based on the normal distribution, as the distribution of X12 + Xzzwhen X;and X are
independent normal random variables with zero mean and same X, are independent normal
random variables with zero mean and same variance.
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