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Abstract

Semihoops play an important role in the study of fuzzy logic based on left continuous t-norms. In this
paper, we introduce the notion of multipliers in semihoops and investigate some related properties of
them. Also, we discuss the relations between multipliers and closure operators in semihoops. Moreover,
we focus on algebraic structures of the set IM(L) of all implicative multipliers in semihoops and obtain
that IM(L) forms a Heyting algebra, when L is an MT L-algebra.
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1. Introduction

Much of human reasoning and decision making is based on an environment of imprecision, uncer-
tainty, incompleteness of information, partiality of truth and partiality of possibility-in short, on an en-
vironment of imperfect information. Hence how to represent and simulate human reasoning become a
crucial problem in information science field. For this reason, various logical algebras have been proposed
as the semantical systems of non classical logic systems, for example, MV-algebras, BL-algebras, MTL-
algebras, residuated latticese, hoops and semihoops. Among these logical algebras, semihoops [1] are
very basic algebraic structures and contain all logical algebras based on residuated lattices. Semihoops are
generalizations of hoops which were introduced by Bosbach. In the last few years, the theory of hoops has
been enriched with deep structure theorems[2, 3, 4, 5, 6, 7]. Many of these results have a strong impact
with fuzzy logics. In particular, from the structure theorem of finite basic hoops, one obtains an elegant
short proof of the completeness theorem for propositional basic logic, which introduced by Hájek [8]. As
a more general structure, a semihoop is a hoop without the condition x � (x → y) = y � (y → x). It
follows that a semihoop does not satisfy the divisibility condition x∧ y = x� (x→ y). Compared to hoops
contains all algebraic structures that induce by continuous t-norms [10], semihoops contains all algebraic
structures that induce by left continuous t-norms. Therefore, semihoops play an important role in studying
fuzzy logics and the related algebraic structures.

The notion of multipliers, introduced from the analytic theory, is helpful for studying algebraic struc-
tures and properties in algebraic systems. Multipliers in a commutative semigroup (A, ∗) were introduced
by Larsen[11] , which was defined by a function f from A into A such that f (x) ∗ y = x ∗ f (y) for all
x, y ∈ A. Consequently, the notion of multipliers has been extended to distributive lattices[12, 13], BE-
algebras[14], d-algebras[15] and BL-algebras[16]. In particular, A. Borumand Saeid[16] introduced a
multiplier in BL-algebras L by a function f from L into L such that f (x → y) = x → f (y) for all x, y ∈ L
and used multipliers to study the algebraic structures of MV-center of BL-algebras. As we have men-
tioned in the above, obstinate fifilters have been widely studied on BL-algebras, residuated lattices and
MV-algebras, etc. All the above mentioned algebraic structures are the special case of semihoops. In fact,
semihoops are the widest possible residuated structure. Therefore, it is interesting to study the multipliers
on semihoops for providing a more general algebraic foundation for inference rule in fuzzy logic based on
left continuous t-norms. This is the motivation for us to investigate multipliers on semihoops.
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2. Preliminaries

In this section, we summarize some definitions and results about semihoops which will be used in the
following sections.

Definition 2.1. [2, 10] An algebra (L,∧,�,→, 1) of type (2,2,2,0) is called a semihoop if it satisfies the
following conditions:

(1) (L,∧, 1) is a ∧-semilattice with upper bounded 1,
(2) (L,�, 1) is a commutative monoid,
(3) (x � y)→ z = x→ (y→ z), for all x, y, z ∈ L.

In what follows, for any x ∈ L, we define x0 = 1 and xn = xn−1 � x for any natural number n.
On a semihoop L, we define x ≤ y if and only if x → y = 1 for all x, y ∈ L. It is easy to check that ≤

is a partial order relation on L and for all x ∈ L, x ≤ 1. Moreover, an algebra L is a bounded semihoop if
L is a semihoop and there exists an element 0 ∈ L such that 0 ≤ x for all x ∈ L. In a bounded semihoop
L, we define the negation ∗ : x∗ = x → 0 for all x ∈ L. If x � x = x, that is, x2 = x for all x ∈ L, then
the semihoop L is said to be idempotent. It is easy to check that an idempotent semihoop is equivalent
to a Brouwerian semilattice [17]. In this work, unless mentioned otherwise, (L,∧,�,→, 0, 1) will be a
bounded semihoop, which will often be referred by its support set L.

Proposition 2.2. [2, 3, 5, 6, 7, 9] In any semihoop L, the following properties hold: for any x, y, z ∈ L,

(1) x ≤ y→ x,
(2) x→ 1 = 1,
(3) 1→ x = x,
(4) x ≤ y⇒ x→ z ≥ y→ z,
(5) x ≤ y⇒ z→ x ≤ z→ y,
(6) x→ (y→ z) = y→ (x→ z),
(7) x � y ≤ z iff x ≤ y→ z,
(8) x � y ≤ x, y,
(9) x � y ≤ x ∧ y,

(10) x→ y ≤ (z→ x)→ (z→ y),
(11) x→ y ≤ (y→ z)→ (x→ z),
(12) (x→ y) � (y→ z) ≤ x→ z.

Proposition 2.3. [2, 3] In any bounded semihoop L, the following properties hold: for any x, y, z ∈ L,

(1) 0∗ = 1, 1∗ = 0,
(2) x ≤ y⇒ x∗ ≥ y∗,
(3) x � x∗ = 0.

3. Multipliers in semihoops

In the section, we introduce the notion of implicative multipliers in semihoops and investigate some
related properties of such operators. Also the algebraic structure of the set IM(L) of all implicative multi-
plier in semihoops be studied.

Definition 3.1. Let L be a semihoop. A mapping f : L → L is called a implicative multiplier on L if it
satisfies the following condition:

f (x→ y) = x→ f (y)

For any implicative multiplier f on L, the kernel of f is the set Ker( f ) = {x ∈ L| f (x) = 1}. f is called
faithful if Ker( f ) = 1.

Now, we present some examples of implicative multipliers in semihoops.

Example 3.2.
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(1) Obvious, idL is a implicative multiplier in semihoop L.
(2) Let L be a semihoop and f (x) = 1, for any x ∈ L . Then f is a implicative multiplier in L. We denoted

this mapping by 1 f .
(3) fp(x) = p → x is a implicative multiplier in every semihoop L, where p ∈ L. fp(x) is called the

principle implicative multiplier in L.
(4) Let L1, L2 be two semihoops. Then L1×L2 is also a semihoop w.r.t. the point-wise operations (such as

:(a, b)→ (c, d) = (a→ c, b→ d)). If we define two maps f , g : L1 × L2 → L1 × L2 by f (x, y) = (x, 1)
and g(x, y) = (1, y), for any (x, y) ∈ L1 × L2. One can easily check that f and g are implicative
multipliers in L1 × L2 w.r.t. the point-wise operations.

(5) Let L = {0, a, b, 1}, 0 < a < b < 1 and �,→ define as follows:

� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Then (L,∧,�,→,0,1) is a semihoop. Now, we define a map f on L as follows:

f (x) =


a, x = 0
b, x = b
1, x = a, 1

.

We have f is a implicative multiplier in L but not faithful.

Next, we present some properties of implicative multipliers in semihoops.

Proposition 3.3. Let f be a implicative multiplier in semihoop L. Then the follows hold: for any x, y ∈ L,

(1) f (1) = 1,
(2) x ≤ y implies x ≤ f (y),
(3) x ≤ f (x),
(4) f (x)→ y ≤ x→ y ≤ x→ f (y) and f (x)→ y ≤ f (x)→ f (y) ≤ x→ f (y),
(5) ( f (x))∗ ≤ x∗ ≤ f (x∗). In particular, if f (0) = 0, then f (x∗) = x∗,
(6) if f is faithful, then f (x) = x.

Proof.

(1) Obvious, 0→ x = 1 for any x ∈ L. Then f (1) = f (0→ x) = 0→ f (x) = 1 implies f (1) = 1.
(2) If x ≤ y, then x→ y = 1, and hence f (x→ y) = x→ f (y) = 1, which implies x ≤ f (y).
(3) It is straightforward from item (2).
(4) From Proposition 3.3(3), we have f (x) → y ≤ x → y ≤ x → f (y) and f (x) → y ≤ f (x) → f (y) ≤

x→ f (y).
(5) It is straightforward from item (4).
(6) Since f ( f (x) → x) = f (x) → f (x) = 1 and f is faithful, we have f (x) → x = 1 implies f (x) ≤ x.

Together with item (3), thus f (x) = x.

Theorem 3.4. Let f be a implicative multiplier in semihoop L. Then the follow statements are equivalent:

(1) f (x)→ x = 1;
(2) f is an identity mapping;
(3) f satisfying the following conditions:

(i) f 2 = f ,
(ii) f (x→ y) = f (x)→ f (y),
(iii) f 2(x)→ y = f (x)→ f (y);

(4) f (x)→ y = x→ f (y);
(5) f is faithful.
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Proof. The equivalence between (1) and (2) are obvious.
(2)⇒ (3) Obviously.
(3)⇒ (4) x→ f (y) = f (x→ y) = f (x)→ f (y) = f 2(x)→ y = f (x)→ y.
(4)⇒ (2) Let x = 1. Then f (1)→ y = 1→ f (y), i.e., f (y) = y.
From Proposition 3.3(6), the equivalence between (2) and (5) are obvious.

Definition 3.5. Let f be a implicative multiplier in semihoop L. Then f is called:

(1) an isotone implicative multiplier if x ≤ y implies f (x) ≤ f (y), for any x, y ∈ L.
(2) an idempotent implicative multiplier if f ( f (x)) = f (x) (that is, f 2 = f ), for any x ∈ L.

Example 3.6.

(1) Let L = {0, a, b, c, 1} be a chain, where 0 < a < b < c < 1. Define operations � and→ as follows:

� 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a a a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 1 1
c 0 b b 1 1
1 0 a b c 1

Then (L,∧,�,→, 0, 1) is a semihoop that is not divisible (because b = b∧c , c�(c→ b) = c�b = a).
Now, we define a map f on L as follows:

f (x) =


0, x = 0
b, x = a, b
1, x = 1, c

.

One can easily check that f is an isotone implicative multiplier in L. Also, f is idempotent.
(2) Let L = {0, a, b, 1}, 0 < a < b < 1 and �,→ define as follows:

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (L,∧,�,→,0,1) is a semihoop. One can easily check that the map fa(x) := a → x on L is an
isotone implicative multiplier, but not idempotent.

In fact, there exist implicative multipliers that are not isotone. For example, the multipliers in Example
3.2(5).

Proposition 3.7. Let f be a implicative multiplier in semihoop L and f preserves→. Then f is isotone.

Proof. If f is a preserves implicative multiplier in semihoop L and x ≤ y, then 1 = f (x → y) = f (x) →
f (y), that is, f (x) ≤ f (y). Thus f is isotone.

In general, the convert of Proposition 3.7 is not true. For example, assume L is a semihoop of Example
3.6(2). Then fa(x) = a → x is an isotone implicative multiplier in semihoops L. Put x = a, y = 0, then
fa(a → 0) = fa(a) = a → a = 1. Meanwhile, fa(a) → fa(0) = (a → a) → (a → 0) = 1 → a = a. Thus
fa(a→ 0) , fa(a)→ fa(0).

Proposition 3.8. Let f be a closure operator in semihoop L and f preserves→. Then f is a implicative
multiplier in L.
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Proof. Since f is preserves →, together with Proposition 3.3(3), we obtain that f (x → y) = f (x) →
f (y) ≤ x → f (y). On the other hand , x → f (y) ≤ f (x → f (y)) = f (x) → f 2(y) = f (x) → f (y) = f (x →
y). Therefore f is a implicative multiplier in L.

Proposition 3.9. Let f be an isotone implicative multiplier in semihoop L and f 2 ≤ f . Then f is a closure
operator on L.

Proof. From Proposition 3.3(3) and f 2 ≤ f , we have f 2 = f . Since f is an isotone multiplier, we obtain
that f is a closure operator on L.

We denote the set of all implicative multipliers in semihoop L by IM(L). Let f1, f2 ∈ IM(L). Then we
define f1 u f2 : L → L by ( f1 u f2)(x) = f1(x) ∧ f2(x), f1 t f2 : L → L by ( f1 t f2)(x) = f1(x) ∨ f2(x),
f1 ◦ f2 : L→ L by ( f1 ◦ f2)(x) = f1( f2(x)), f1 ≤ f2 by f1(x) ≤ f2(x) for any x ∈ L. Therefore the following
results hold.

Theorem 3.10. Let f1, f2 are two implicative multipliers in semihoop L. Then

(1) f1 ◦ f2 is a implicative multiplier in L;
(2) f1 u f2 is a implicative multiplier in L;
(3) (M(L), ◦, idL) is a monoid, where idL is an identity mapping;
(4) L is an MTL-algebra implies f1 t f2 is a implicative multiplier in L.

Proof.

(1) Since ( f1 ◦ f2)(x → y) = f1(x → f2(y)) = x → ( f1 ◦ f2)(y), we have f1 ◦ f2 is a implicative multiplier
in L.

(2) Since ( f1 u f2)(x → y) = f1(x → y) ∧ f2(x → y) = (x → f1(y)) ∧ (x → f2(y)) = x → f1(y) ∧ f2(y) =

x→ ( f1 u f2)(y), which implies f1 u f2 is a implicative multiplier in L.
(3) Obviously.
(4) If L is an MTL-algebra, then ( f1 t f2)(x→ y) = f1(x→ y)∨ f2(x→ y) = (x→ f1(y))∨ (x→ f1(y)) =

x→ f1(y) ∨ f2(y) = x→ ( f1 t f2)(y), thus f1 t f2 is a implicative multiplier in L.

Theorem 3.11. Let L be an MTL-algebra. Then (IM(L),u,t,≤, ↪→, idL, 1 f ) forms a Heyting algebra
(where ( f1 ↪→ f2)(x) := t{ f | f1 u f ≤ f2 }).

Proof. Firstly, we show that (IM(L),u,t, idL, 1 f ) is a bounded distributive lattice with idL as the the
smallest element and 1 f as the greatest element. For any f1(x), f2(x), f3(x) ∈ IM(L), together with Theo-
rem 3.10(2) and (4), we have f1t( f2u f3) and ( f1t f2)u( f2t f3) are implicative multipliers in L. Moreover,
( f1 t ( f2 u f3))(x → y) = f1(x → y) t ( f2(x → y) u f3(x → y)) = (x → f1(y)) ∨ ((x → f2(y)) ∧ (x →
f3(y))) = [(x→ f1(y)) ∨ (x→ f2(y))] ∧ [(x→ f1(y)) ∨ (x→ f3(y))] = [ f1(x→ y) ∨ f2(x→ y)] ∧ [ f1(x→
y)∨ f3(x→ y)] = [( f1t f2)(x→ y)]∧ [( f1t f3)(x→ y)] = [( f1t f2)u ( f1t f3)](x→ y). Meanwhile, from
Examples 3.2(1) and (2), we have that idL and 1 f are implicative multipliers in semihoops. Together with
Proposition 3.3(3), it is easily obtain that idL ≤ f ≤ 1 f for any f ∈ IM(L), namely, idL is the the smallest
element and 1 f is the greatest element of IM(L). Thus IM(L),u,t,≤, idL, 1 f ) form a bound distributive
lattice .

The following will check that for any multipliers m, f , g ∈ IM(L), mu f ≤ g if and only if m ≤ f ↪→ g.
Obvious, ( f1 ↪→ f2)(x) := t{ f | f1 u f ≤ f2} is well define. If m u f ≤ g, then m(x) ∧ f (x) ≤ g(x) for
any x ∈ L, that implies m ∈ {q| f u q ≤ g}. So m ≤ t{q| f u q ≤ g}, namely, m ≤ f ↪→ g. Conversely, if
m ≤ f ↪→ g, then m(x) ≤ ( f ↪→ g)(x) for any x ∈ L. Thus m ≤ t{q| f u q ≤ g} implies f u m ≤ g, that is,
m u f ≤ g. Therefore (IM(L),u,t,≤, ↪→, idL, 1 f ) forms a Heyting algebra.
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