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Abstract: In the present work Harrison’s first principle technique, based on the concept of orthogonalised 
plane waves, has been successfully applied to compute various electronic and core interactions in order 
to obtain the Fourier transform of the crystal potential, termed as the form factor. The computed form 
factors have been consequently used to compute the physical properties through formulae developed by 
various authors in the past few decades. 
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1. Introduction  
   One of the important physical properties of a metal is its electrical resistivity. It is found to vary gradually 
with the increase in temperature. It is really a matter of interest to determine the resistivity of a metal when it 
melts. A method to study the electrical resistivity of liquid metals is the electrical conduction theory developed by 
Faber and Ziman using the concept of model pseudopotential. In this approach a liquid metal is assumed to 
consist of a system of ions and electrons. This concept of pseudopotential for calculating various dynamic 
properties of metals has been in vogue for the last four decades. An important application of pseudopotential is 
the calculation of transport properties of disordered materials such as liquid or amorphous metals. Resistivity of 
some binary liquid alloys has also been explained in details by Faber and Ziman through such pseudopotential. 
However, a problem with model pseudopotential is its transferability because sometimes with change of 
environment the change of parameters are also required to get good agreement with the experimental results. 
The present work is based on Harrison’s first principle (HFP) pseudopotential technique which is basically an 
orthogonalised plane wave (OPW) method. Through this technique the electrical resistivity of monovalent liquid 
metals has been computed near melting point using well-known Ziman’s formula. The concept is then extended 
for divalent and trivalent metals. The computed results for monovalent metals like sodium and potassium, divalent 
metals like magnesium and zinc and trivalent metals like aluminium and gallium have been compared with the 
experimental data and an overall reasonable agreement is obtained. In this course impact of various input 
parameters too has been studied viz. core energy eigenvalues, exchange parameter, OPW parameter, as 
provided by different authors. 

A study of the literature reveals that although different physical properties of metals have been studied by 
various authors, the study of magnetic properties such as Knight shift is scarce. Hence, it deserves investigation 
on using Knight’s formula through the HFP technique. 
 

2. Basic Formalism 
2.1 Electrical Resistivity : 

The electrical resistivity has been computed through Ziman’s formula given by [1] 
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2.2 Knight Shift :  
           The Knight shift has been computed through the equation given by [2] 

                         







0 F

F
2
FF

0
F

'
F

0

1 dq
k2q

k2q
lnqq,kwqa

kE4

Z3

P

P

K

K
,                                                                  (iii) 

where PF denotes the Cauchy principal value and EF the Fermi energy. 
 

3. Results and Discussion 
We have computed the form factor, w(k, q), of some metals viz. monovalent metals (Na, K), divalent 

metals (Mg, Zn) and trivalent metals (Al, Ga), using various sets of eigenvalues and corresponding eigen 

functions of Herman-Skillman [3] and Clementi [4] and also the X-exchange parameters as suggested by 
different authors viz. Slater [5], Kohn-Sham [6] and Schwartz [7]. Further, the experimental and theoretical 
structure factors [a(q)] measured by various authors have also been taken into consideration during the 
evaluation of the electrical resistivity and Knight shift of the metals under investigation. The results thus obtained 
have been presented in the Table and the form factors are depicted in Figures 1 to 6. 
 

Table 
Electrical Resistivity and Knight Shift 

 
 

 

Metal 
Eigenvalues 

due to 

Electrical resistivity (μ-cm.) Knight shift (%) 

Theoretical Experimental Theoretical Experimental 

Na  Herman-Skillman 9.17 9.65 0.071 0.116 

K Herman-Skillman 13.15 13.2 0.307 0.253 

Mg  Herman-Skillman 29.7 27.4 0.089 0.112 

Zn  Clementi 31.9 37.4 0.388 0.336 

Al  Clementi 37.1 37.1 0.112 0.164 

Ga  Clementi 24.9 25.8 0.426 0.449 

 Fig.1: Form factor of Na 
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Fig.2 : Form factor of  K 
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Fig.3 : Form factor of Mg 
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Fig.4 : Form factor of Zn 
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Fig.5 : Form factor of Al 
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It is found that in case of Mg the form factor as computed by using the eigenvalues of Herman-Skillman 

improves the result and gives almost the same value with the structure factor of Worner et al [8]. 

In case of Zn the form factor obtained through the eigenvalues of Clementi with = 2/3 gives better 
agreement with the structure factor of Waseda [9]. 

In case of Al the form factor calculated through the eigenvalues of Clementi with = S = 0.72795 gives 
better agreement with the structure factor of Stallard and Davis [10]. 

In case of Ga the form factor found out on using the eigenvalues of Clementi with = 2/3 and = S = 
0.70644 gives better result than the structure factor of Pake [11]. 

It has been observed that in case of Na, K and Mg only the eigenvalues of Herman-Skillman give 
reasonable agreement; otherwise in case of Zn, Al and Ga the eigenvalues of Clementi based on Thomas-Fermi 
technique present better picture. 

Hence, further investigation of Knight shift has been carried with these form factors using X-parameters 
as proposed by Schwartz. The computed values of Knight shift are in reasonable agreement for the metals under 
investigation. 
 

4. Conclusion  
During our investigation it has been observed that unlike other properties such as electrical resistivity, 

thermo-electric power, Fermi energy, density of states etc., which involve the square of the form factor, the 
integrand of Knight shift depends linearly upon w(k, q). Hence, through the computation of Knight shift one can 
assess the correctness of the magnitude as well as the sign of the form factor. The electrical resistivity depending 
upon the square of the form factor can be used to test the correctness of its magnitude only. However, it has been 
observed that the electrical resistivity having larger magnitude and more sensitiveness to the nature and 
magnitude of the form factor serves this purpose quite satisfactorily. 
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Fig.6 : Form factor of Ga 
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