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Abstract

The concept of cubic ideals in co-residuated lattices is introduced and some interesting properties are ob-
tained. Characterization theorem of cubic ideals is also discussed by the notion of cubic level sets. We
construct Cartesian product of two cubic ideals by using max-min operations, and give some characteri-
zations of them.
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1. Introduction

It is well known that the study of multivalued logic systems and corresponding algebraic systems is
closely related. MV-algebras were introduced by Chang [1] 1958 as to provide an algebraic proof of the
completeness theorem of infinite valued Łukasiewicz propositional calculus. The theory of residual lat-
tices based on triangular modules is important for providing an algebra frame for the algebraic semantics
of formal fuzzy logics such as MV-algebras, BL-algebras and BCK-algebras. MV-algebras is character-
ized by the operator ⊕ which could be looked as the generation of conorm in lattices. In the properties of
MV-algebras, there existed an operator 	 such that a ≤ b⊕ c if and only if a	 c ≤ b, and (⊕,	) constituted
a pair just like adjoint pair (⊗,→). Therefore, Zheng and Wang [2] proposed the notion of coadjoint pair,
and coresiduated lattice, as the dual algebra structure of residuated lattice. Coresiduated lattices provide a
new frame for logic algebras, Zheng and Wang pointed out that the notion of normal coresiduated lattices
is consistency with that of normal residuated lattices. Based on the properties of co-residuated, Zhu [3]
proved that regular co-residuated lattices are equivalent to involutory BCK-lattices.

Since ideals are closely related to congruence relations with which one can associate quotient algebras,
so the ideal theory is a very effectively tool to study logical algebras and the completeness of the corre-
sponding nonclassical logics In the theory of MV-algebras, as in various algebraic structures, the focus is
the notion of ideals. The properties of ideals in coresiduated lattices were investigated and the embedding
theorem of coresiduated lattices was obtained in [4]. In addition, based on the fuzzy set theory intro-
duced by Zadeh, the related fuzzy structures (i.e., the fuzzification) of ideals in in various logic algebras
have captured many scholars attention. Using falling shadows theory, [5] proposed the concept of falling
fuzzy (implicative) ideals which as a generalization of a T∧-fuzzy (implicative) ideal in MV-algebras.
Al-Masarwah and Ahmad introduced the notion of doubt bipolar fuzzy H-ideals of BCK/BCI-algebras
and investigate some interesting properties [6]. The notion of fuzzy ideals are introduced in coresiduated
lattices in [7], and the characterizations of fuzzy ideals, fuzzy prime ideals, and fuzzy strong prime ideals
in coresiduated lattices are investigated and also some relations between ideals and fuzzy ideals are estab-
lished. Using a fuzzy set and an interval-valued fuzzy set, Jun et al. [8] introduced a new notion, called
a cubic set, and investigated several properties, then they applied the cubic theory to BCK/BCI-algebras,
and proposed cubic P-ideals and cubic α-ideals [9]. Continue the Jun’s work, Senapati and Shum applied
the concept of cubic sets to implicative ideals of BCKBCK-algebras, and then discussed relations among
cubic implicative ideals, cubic subalgebras and cubic ideals of BCK-algebras [10].
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In the paper, we apply cubic sets to co-residuated lattices, and introduce the notion of cubic ideals.
Then some characterizations of cubic ideals are discussed. Particularly, the notion of Cartesian product of
two cubic ideals by using max-min operations is introduced, and some related properties are studied.

2. Preliminaries

In this section we recall some of the fundamental concepts and definitions which are necessary for this
paper.

Definition 2.1. [2] Let P be a poset, and ⊕,	 : P × P → P be two binary operations. (⊕,	) is called a
coadjoint pair on P if it satisfies the following conditions:

(1) ⊕ is isotone;
(2) 	 is isotone on first variable and antitone on second variable;
(3) a ≤ b ⊕ c if and only if a 	 c ≤ b, for any a, b, c ∈ P.

Definition 2.2. [2] An algebra (L,∨,∧,⊕,	, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a co-residuated lattice
if it satisfies the following axioms:

(i) (L,∧,∨, 0, 1) is a bounded lattice with the greatest element 1 and the smallest element 0,
(ii) (L,⊕, 0) is a commutative monoid,

(iii) (⊕,	) is a coadjoint on L.

In what follows, (L,∨,∧,⊕,	, 0, 1) is always assumed to be a co-residuated lattice and will often be
referred to by its support set L.

Proposition 2.3. ([2, 4]) For any co-residuated lattice (L,∨,∧,⊕,	, 0, 1) , we have: for any x, y, z,w, v ∈
L,

(1) 1 ⊕ x = 1, 0 ⊕ x = x, x 	 0 = x, x 	 y ≤ x ≤ x ⊕ y;
(2) x ≤ y if and only if x 	 y = 0, x ⊕ y = 0 if and only if x = y = 0;
(3) (x ⊕ y) 	 y ≤ x ≤ (x 	 y) ⊕ y;
(4) x 	 (x ∧ y) = x 	 y, (x ∨ y) 	 y = x 	 y;
(5) x 	 (x 	 y) ≤ x ∧ y ≤ x ∨ y ≤ (x 	 y) ⊕ y;
(6) (x ⊕ y) 	 (y ⊕ z) ≤ x 	 z ≤ (x 	 y) ⊕ (y 	 z);
(7) (x 	 z) 	 (y 	 z) ≤ x 	 y, (z 	 y) 	 (z 	 x) ≤ x 	 y.

A nonempty subset I of L is called an ideal if it satisfies: (i) 0 ∈ I; (ii) for any x, y ∈ L, if x ∈ I and
y ≤ x, then y ∈ I; (iii) x, y ∈ I implies x ⊕ y ∈ I. It has been shown that a nonempty subset I of L is an
ideal if and only if (i) 0 ∈ I; (2) x ∈ I and y 	 x ∈ I imply y ∈ I, for any x, y ∈ L

Let L1 and L2 be two co-residuated lattices. A function f : L1 → L2 is a homomorphism if it
satisfies the following conditions: satisfying f (11) = 12, f (01) = 02, f (a ∗ b) = f (a) ? f (b), where
∗ ∈ {∨1,∧1,⊕1,	1} in L1 and ? ∈ {∨2,∧2,⊕2,	2} in L2.

The determination of maximum and minimum between two real numbers is very simple but it is
not simple for two intervals. In [11] Biswas described a method to find max/sup and min/inf between
two intervals or set of intervals. A closed subinterval ã = [a−, a+] of a closed unit interval [0, 1] is
called an interval number, where 0 ≤ a− ≤ a+ ≤ 1. Denote by D[0, 1] the set of all interval numbers.
We define the operations ∧, ∨, ≥, ≤ and = in case of two elements in D[0, 1]. Consider two elements
ã1 = [a−1 , a

+
1 ], ã2 = [a−2 , a

+
2 ] in D[0, 1], then

(1) ã1 ≥ ã2 if and only if a−1 ≥ a−2 and a+
1 ≥ a+

2 ;
(2) ã1 ≤ ã2 if and only if a−1 ≤ a−2 and a+

1 ≤ a+
2 ;

(3) ã1 = ã2 if and only if a−1 = a−2 and a+
1 = a+

2 ;
(4) ã1 ∧ ã2 = [min{a−1 , a

−
2 },min{a+

1 , a
+
2 }];

(5) ã1 ∨ ã2 = [max{a−1 , a
−
2 },max{a+

1 , a
+
2 }];

(6) rinfi∈Λãi = [inf
i∈Λ

a−i , inf
i∈Λ

a+
i ], where ãi ∈ D[0, 1], i ∈ Λ;
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(7) rsupi∈Λãi = [sup
i∈Λ

a−i , sup
i∈Λ

a+
i ], where ãi ∈ D[0, 1], i ∈ Λ;

other operations > and < can be defined analogously.
An interval-valued fuzzy set A over a nonempty set X is an object having the form A = {(x, [µ−A(x), µ̃A(x))|x ∈

X}, where µ̃A : X → D[0, 1].
Based on fuzzy sets and interval-valued fuzzy sets, Jun et al. [8] introduced the notion of cubic sets,

and investigated several properties.

Definition 2.4. Let X be a nonempty set. A cubic set A in X as an object having the following form:

A = {(x, µ̃A(x), λA(x))|x ∈ X},

where µ̃A = [µ−A, µ
+
A] is an interval-valued fuzzy set in X and λA is a fuzzy set in X, and µ+

A(x)+λA(x) ≤ 1. In
order to facilitate our subsequent discussion, a cubic set A is briefly denoted by A = (µ̃A, λA), the number
A(x) = (µ̃A(x), λA(x)) is called a cubic element, and we denote by C(X) the set of all cubic sets in X.

For two cubic elements A(x) and A(y) of the cubic set A, we give the following operations:

(1) A(x) � A(y) iff µ̃A(x) ≤ µ̃A(y), λA(x) ≥ λA(y);
(2) A(x) ≺ A(y) iff µ̃A(x) < µ̃A(y), λA(x) > λA(y);
(3) A(x) � A(y) iff µ̃A(x) ≥ µ̃A(y), λA(x) ≤ λA(y);
(4) A(x) � A(y) iff µ̃A(x) > µ̃A(y), λA(x) < λA(y);
(5) A(x) = A(y) iff µ̃A(x) = µ̃A(y), λA(x) = λA(y);
(6) A(x) Y A(y) = (µ̃A(x) ∨ µ̃A(y), λA(x) ∧ λA(y));
(7) A(x) Z A(y) = (µ̃A(x) ∧ µ̃A(y), λA(x) ∨ λA(y)).

If Ai = (µ̃Ai , λAi ) (i ∈ Λ) are cubic elements, where Λ is an index set, then we define:

supi∈ΛAi =
(
rsupi∈Λµ̃Ai , infi∈Λ λAi

)
.

Let A = (µ̃A, λA) and B = (µ̃B, λB) be two cubic sets of X, we put A v B if and only if A(x) � B(x) for
any x ∈ X; A < B if and only if A(x) ≺ B(x) for any x ∈ X.

3. Cubic ideals of co-residuated lattices

In this section, we give the notion of cubic ideals of co-residuated lattices and study several properties
of them.

Definition 3.1. Let A = (µ̃A, λA) be a cubic set of a co-residuated lattice L. Then A is called a cubic ideal
of L if it satisfies the following conditions: for any x, y ∈ L,

(1) A(x) � A(0);
(2) A(y) Z A(x 	 y) � A(x).

The following example shows that cubic ideals exist.

Example 3.2. Let M = {0, a, b, c, 1} be a set with the Hasse diagram and Cayley tables as follows.

s ss
ss

@
@

�
�

�
�
@
@

0

a b

c

1 ⊕ 0 a b c 1
0 0 a b c 1
a a a c c 1
b b c b c 1
c c c c c 1
1 1 1 1 1 1

	 0 a b c 1
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c b a 0 0
1 1 1 1 1 0

Then (M,∨,∧,⊕,	, 0, 1) is a co-residuated lattice. Define a cubic set A = (µ̃A, λA) in M as follows:

µ̃A(x) =



[0.8, 0.9], x = 0,
[0.4, 0.6], x = a,
[0.3, 0.7], x = b,
[0.3, 0.6], x = c,
[0.1, 0.4], x = 1;

λA(x) =



0.1, x = 0,
0.5, x = a,
0.4, x = b,
0.5, x = c,
0.7, x = 1.
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It is easy to check that A is a cubic ideal of L.

Proposition 3.3. Let A ∈ C(L). Then A is a cubic ideal of L if and only if for any x, y ∈ M,

(1) x ≤ y implies A(y) � A(x);
(2) A(x) Z A(y) � A(x ⊕ y).

Proof. Suppose that A is a cubic ideal of L and x, y ∈ L, if x ≤ y, then A(x) � A(y)ZA(x	y) = A(y)ZA(0) =

A(y). From (x⊕y)	y ≤ x, we have A((x⊕y)	y) � A(x), and A(x⊕y) � A(y)ZA((x⊕y)	y) � A(x)ZA(y).
Conversely, for any x ∈ L, we have 0 ≤ x, thus A(x) � A(0). For any x, y ∈ L, since x ≤ (x 	 y) ⊕ y,

then A((x 	 y) ⊕ y) � A(x), it follows that A(y) Z A(x 	 y) � A((x 	 y) ⊕ y) � A(x), hence A is a cubic ideal
of L.

Let A = (µ̃A, λA) ∈ C(L), r ∈ [0, 1] and [s, t] ∈ D[0, 1] such that r + t ≤ 1. The set

L(A; ([s, t], r)) = {x ∈ L|µ̃A(x) ≥ [s, t], λA(x) ≤ r}

is called a ([s, t], r)-cubic level set of A. The proof of the next proposition is straightforward, and will be
omitted.

Proposition 3.4. Let A ∈ C(L). Then the following statements are equivalent:

(1) A is a cubic ideal of L;
(2) for any r ∈ [0, 1] and [s, t] ∈ D[0, 1] such that r + t ≤ 1, the nonempty cubic level set L(A; ([s, t], r)) is

an ideal of L.

Theorem 3.5. Let A ∈ C(L). Then A is a cubic ideal of L if and only if z	 x ≤ y implies A(x)ZA(y) � A(z)
for any x, y, z ∈ L.

Proof. Assume that A is a cubic ideal of L and there exist x, y, z ∈ M such that z 	 x ≤ y, then A(z 	 x) �
A(y), it follows that A(z) � A(x) Z A(z 	 x) � A(x) Z A(y).

Conversely, from 0 	 x = 0 ≤ x we have A(0) � A(x) Z A(x) = A(x). Since x 	 (x 	 y) ≤ y, then
A(x) � A(y) Z A(x 	 y), and so A is a cubic ideal of L.

Proposition 3.6. Let A ∈ C(L). Then A is a cubic ideal of L if and only if for any x, y ∈ L,

(1) A(x) Z A(y) � A(x ⊕ y),
(2) A(y) � A(x ∧ y).

Proof. We only need to show that (2) is equivalent to (1) of Proposition 3.3. Assume that A is a cubic
ideal of L, since x ∧ y ≤ y for any x, y ∈ L, then A(y) � A(x ∧ y).

Conversely, suppose that (2) of Proposition 3.6 holds. For any x, y ∈ L, if x ≤ y, then x ∧ y = x, and
hence A(x) = A(x ∧ y) � A(y), therefore (1) of Proposition 3.3 is valid.

Proposition 3.7. Let A be a cubic ideal of L. Then the following results hold: for any x, y, z ∈ L,

(1) if A(x 	 y) = A(0), then A(y) � A(x);
(2) A(x ∨ y) = A(x) Z A(y);
(3) A(x ⊕ y) = A(x) Z A(y);
(4) A(x 	 y) Z A(y 	 z) � A(x 	 z).

Proof. (1) Since A is a cubic ideal of L, then A(y) = A(y) Z A(0) = A(y) Z A(x 	 y) � A(x) by Definition
3.1.

(2) Since x ∨ y ≤ x ⊕ y, according to Proposition 3.3, we have A(x) Z A(y) � A(x ⊕ y) � A(x ∨ y).
As for the reverse inequality, from x, y ≤ x ∨ y, we have A(x ∨ y) � A(x) and A(x ∨ y) � A(y), and so
A(x ∨ y) � A(x) Z A(y), therefore (2) is valid.

(3) Since x ∨ y ≤ x ⊕ y, using Proposition 3.6 and (2) we get that A(x) Z A(y) � A(x ⊕ y) � A(x ∨ y) =

A(x) Z A(y), and so A(x ⊕ y) = A(x) Z A(y).
(4) Notice that x	 z ≤ (x	 y)⊕ (y	 z), we get that A(x	 z) � A((x	 y)⊕ (y	 z)) = A(x	 y)Z A(y	 z),

thus (4) is valid.
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Proposition 3.8. Let A be a cubic ideal of L. If there exists a sequence {xn} of L such that lim
n→+∞

A(xn) =

([1, 1], 0), then A(0) = ([1, 1], 0).

Proof. Since A is a cubic ideal of L, then A(0) � A(x) for any x ∈ L, it follows that A(0) � A(xn) for any
positive integer n. Consider that ([1, 1], 0) � A(0), we get A(0) = ([1, 1], 0).

Let (L1,∨1,∧1,⊕1,	1, 01, 11) and (L2,∨2,∧2,⊕2,	2, 02, 12) be two co-residuated lattices. Then L1×L2
is also a co-residuated lattice with respect to the point-wise operations given by:

(a, b) ∨ (w, v) = (a ∨1 b, a ∨2 b), (a, b) ∧ (w, v) = (a ∧1 b, a ∧2 b),
(a, b) ⊕ (w, v) = (a ⊕1 b, a ⊕2 b), (a, b) 	 (w, v) = (a 	1 b, a 	2 b),

for any (a, b), (w, v) ∈ L1 × L2.

Definition 3.9. Let A, B ∈ C(L). The cartesian product A × B of A and B is defined by

(A × B)(x, y) = A(x) Z B(x),

for any (x, y) ∈ L × L. Obviously, A × B is a cubic set of L × L.

Proposition 3.10. Let A, B ∈ C(L). If A and B are cubic ideals of L, then A × B is a cubic ideal of L × L.

Proof. Since A and B are cubic ideals of L, then for any (x1, x2), (y1, y2) ∈ L × L, we have
(A × B)((x1, x2) ⊕ (y1, y2)) = (A × B)(x1 ⊕ y1, x2 ⊕ y2)
= A(x1 ⊕ y1) Z B(x2 ⊕ y2)
� A(x1) Z A(y1) Z B(x2) Z B(y2)
= (A(x1) Z B(x2)) Z (A(y1) Z B(y2))
= (A × B)(x1, x2) Z (A × B)(y1, y2).

For any (x1, x2), (y1, y2) ∈ L × L, if (x1, x2) ≤ (y1, y2), then x1 ≤ y1 and x2 ≤ y2, and so A(y1) � A(x1),
B(y2) � B(x2). It follows that (A × B)(x1, x2) = A(x1) Z B(x2) � A(y1) Z B(y2) = (A × B)(y1, y2), hence
A × B is a cubic ideal of L × L.

Proposition 3.11. Let A ∈ C(L). Then A is a cubic ideal of L if and only if A× A is a cubic ideal of L× L.

Proof. The sufficiency is very clear by Proposition 3.10, we only need to give the proof of the necessity.
We first show that A(x) � A(0) for any x ∈ L. In fact that A(x) = A(x)ZA(x) = (A×A)(x, x) � (A×A)(0, 0) =

A(0)ZA(0) = A(0), hence A(x) � A(0). For x, y ∈ L, it follows that A(x⊕y) = A(x⊕y)ZA(0⊕0) = (A×A)(x⊕
y, 0⊕0) = (A×A)((x, 0)⊕(y, 0)) � (A×A)(x, 0)Z(A×A)(y, 0) = (A(x)ZA(0))Z(A(y)ZA(0)) = A(x)ZA(y),
which means that A(x ⊕ y) � A(x) Z A(y).

For any x, y ∈ L, if x ≤ y, then (x, 0) ≤ (y, 0), and so A(x) = A(x)ZA(0) = (A×A)(x, 0) � (A×A)(y, 0) =

A(y) Z A(0) = A(y), that is, A(x) � A(y). Hence A is a cubic ideal of L.

In the following, homomorphisms of cubic ideals are defined and some results are studied.

Definition 3.12. Let f be a mapping from an MV-algebra M1 into an MV-algebra M2, and A, B be cubic
sets of M1 and M2, respectively. Then
(1) the preimage f −1(B) of B under f is defined as f −1(B)(x) = B( f (x)), for any x ∈ M1;
(2) the image f (A) of A under f is defined as

f (A)(y) =

sup{A(x)| f (x) = y}, f −1(y) , ∅,
([0, 0], 1), otherwise.

The following result can be easy proved together with Definition 3.12, and so we omit the proof.

Proposition 3.13. Let f : M1 → M2 be a homomorphism of MV-algebras and A, B be cubic MV-ideals
of M1 and M2, respectively. Then
(1) the preimage f −1(B) is a cubic MV-ideal of M1;
(2) the image f (A) is a cubic MV-ideal of M2.
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