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Abstract

Hoops play an important role in the study of fuzzy logic based on #-norms. In this paper, we introduce
some notions of n-fold implicative pseudo valuations on hoops, and also analysis some properties of them.
The shrinkage property for n-fold implicative pseudo valuations is provided, and the preimage and image
of n-fold implicative pseudo valuation are discussed.
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1. Introduction

A continuous #-norm is a continuous map * from [0, 11% into [0, 1] such that ([0, 1], %, 1) is a com-
mutative totally ordered monoid. Since the natural ordering on [0, 1] is a complete lattice ordering, each
t-norm induces naturally a residuation, or an implication in more logical. One of the relevant algebraic
aspects of a continuous #-norm on [0, 1] is the fact that the associated monoid is residuated. Hoops as
ordered commutative residuated integral monoids satisfying a further conditions, were introduced by Bos-
bach [1]. Hoops have long been considered of interest by algebraists, starting from the classical example
of the lattice-ordered monoid. Kondo [2] considered that fundamental properties of filters in hoops, and
then pointed out that any positive filter of a hoop is implicative and fantastic. To extend the research to
filter theory of hoops, [4] introduced the notions of n-fold (positive) implicative filters, [3] gave the no-
tions of some types of filters ((positive) implicative filters, fantastic filters, associative filters) in pseudo
hoop-algebras and investigated their properties.

Yang and Xin applied the notion of pseudo-valuations of [5] to EQ-algebras, and studied some char-
acterizations of pseudo pre-valuations on EQ-algebras [6]. They also introduced the notion of pseudo
MV-valuations by a function from a BL-algebra to an MV-algebra, which provides a new idea for the s-
tudy of BL-algebras from MV-algebras [7]. Following the research work of [8], Wang et al. [9] introduced
the notion of implicative pseudo valuations on hoops, and showed that a pseudo valuation on regular hoops
is implicative if and only if it satisfies ¢(x LI x") = 0.

Considering that the notions of pseudo-valuations [6, 9] and n-fold implicative filters [4], we present
the notion of n-fold implicative pseudo valuations on hoops. Some properties of n-fold implicative pseudo
valuations are given and the shrinkage property for n-fold implicative pseudo valuations is valid. The
preimage and image of n-fold implicative pseudo valuation are also discussed.

2. Preliminaries

By a hoop-algebra or briefly hoop, we shall mean an algebra (H,®, —, 1) of type (2,2, 0) satisfying
the following axioms: for any x,y,z € H,

(HP1) (H,®, 1) is a commutative monoid;
HP2) x »> x=1;
(HP3) x®@ (x » y) =y®(y — x);
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HP4) x > (y—-2)=(x®y) -z

On every hoop (H, ®, —, 1), there is a natural order “<” called the hoop-ordering defined by x < y if
and only if x — y = 1 for any x,y € H. Under this order, it can be proved that (H, <) is a meet semilattice
with x Ay = x® (x — y) and | as the maximal element. In this work, unless mentioned otherwise,
(H,®, —, 1) will be a hoop, which will often be referred by its support set H.

Proposition 2.1. [10, 11] Let (H,®,—, 1) be a hoop. Then the following assertions are valid: for any
x,y,z2 € H,

() x®@y<zifandonlyifx <y — z;

2) x@(x =Y <Y xQYSXAY<Xx—> V) Xx<Yy—>X
B)x-y<s@y—2)>G@—>2y2x<@-oy) > @)
@ x->y)->x->2)<x—> (-2

G x=>0—-22=x8y) »z=y—=>(x-2);

6) ifx<y theny > z<x—>2z7—>x<z->yandx®z<y®z

Let (H,®, —, 1) be a hoop and F a nonempty subset of H. F is called a filter if it satisfies: for any
x,y€ H (1) x,y € Fimpliesx®y € F; (2) x € F and x < y imply y € F. It is shown that a nonempty
subset F' of a hoop H is a filter if and only if for any x,y € H, (1) 1l € F; (2)x € Fandx - y € F
imply y € F. Moreover, a non-empty set ' of H is called an implicative filter of H if it satisfies that
x—> -z eFandx - ye Fimply x — z € F, for any x,y,z € H [12].

We denote x" = x®---® xif n > 0 and x° = 1 for any x € H.

N

n times
Definition 2.2. [4] Let F be a subset of H and n € N. F is called a n-fold implicative filter of H if it
satisfies:
(1) 1eF,

Q) X" > @—>zeFandx" - yeFimplyx* - z€F, forany x,y,z € H.

Definition 2.3. [6] Let ¢ : H — R be a real-valued function, where R is the set of all real numbers. Then
@ is called a pseudo valuation on A with respective a filter if it satisfies the following conditions: for any
x,y € H,

(1 () =0,

() @) < @(x) + o(x = y).

A pseudo valuation ¢ is called a valuation if p(x) = 0 implies x = 1.

Proposition 2.4. [6] Let ¢ be a pseudo valuation on H. Then the following inequalities are valid: for any
x,y,2€ H,

(1) x <y implies p(y) < ¢(x),

(2) 0 < ¢(x),

3) ¢lx = 2) < @(x = y) + @y = 2),

@) p(x = (y = 2) <e((x = y) - 2).

Definition 2.5. [9] A real-valued function ¢ on H is called an implicative pseudo valuation if it satisfies:

(1) (1) =0,
(2) p(x = 2) L p(x = (y = 2)) + p(x =), for any x,y € H.

Proposition 2.6. [9] Every implicative pseudo valuation on H is a pseudo valuation on H.

Definition 2.7. Let H,, H, be Hoops. A function f : Hy — H, is called a hoop-homomorphism if

@O fA=1,
() fla®b) = f(a)® f(b),
(3) fla - b) = fla) = f(b),

foranya,b € Hy.
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3. n-fold implicative pseudo valuations

In the section, the notion of pseudo valuations on hoop-algebras is given, and some characterizations
of pseudo valuations are shown.

Definition 3.1. Let ¢ be a real-valued function on H and n € N. Then ¢ is called a n-fold implicative
pseudo valuation on H if it satisfies:

(1) ¢(1) =0,
2) p(x" > 2) < e(x" > (y = 2)) + o(x" = y), for any x,y € H.

Remark 3.2. (1) Notice that 1-fold implicative pseudo valuation on a hoop is an implicative pseudo
valuation.

(2) The notion of n-fold implicative pseudo valuations on a hoop generalizes the notion of implicative
pseudo valuations.

(3) Every n-fold implicative pseudo valuations on a hoop is a pseudo valuation.
The following example shows that n-fold implicative pseudo valuations are exist.

Example 3.3. Let H = {0, a, b, c, 1} be a set with the Hasse diagram and Cayley tables as follows.
‘ b b

- |0

~ S O®
S S OIS
Q OO
~ SR O~
~ o~ o~~~

0
0
a
b

S &~
QA S~ NQ

1
1
)
b

~ S O

Then (H,®, —, 1) is a hoop. Define a real-valued function ¢ : H — R by ¢(0) =5, ¢(a) = 2, ¢(b) = 3 and
¢(1) = 0. Then ¢ is a n-fold implicative pseudo valuation on H, while it is not a 2-fold implicative pseudo
valuation, since <,0(b2 —-0)=3 ;{ <,0(b2 — (* - 0)+ go(b2 — b?) =0.

Proposition 3.4. Let ¢ be a real-valued function of H. If ¢ is a n-fold implicative pseudo valuation on H,
then the set H, := {x € H|p(x) = 0} is a n-fold implicative filter of H.

Proor. Obviously, 1 € H,. Forany x" — (y = z) € H, and X" — y € H,, then we have p(x" —
(y = 2)) = 0and p(x" — y) = 0. Notice that ¢ is a n-fold implicative pseudo valuation, we obtain that
e(x" > ) < (X" = (y = 7)) + p(x* — y) =0, and p(x* — z) > 0. Hence o(x" — z) = 0, it follows that
x" — z € H,, and so H, is a n-fold implicative filter of H.

Theorem 3.5. Let ¢ be a pseudo valuation on H. Then the following conditions are equivalent: for any
x,y,z€H,

(1) ¢ is a n-fold implicative pseudo valuation on H,
2) p(x" =) < p(x"™! = y),

(3) " = x*) =0,

@) o((x" = y) =» (X" = 2) < p(x" = (y > 2).

Proor. (1) = (2) Forany x,y € H, we getthat x” — x = 1, and ¢(x" = y) < (" = (x = y)) + o(x" —
Xx) = <,0(x’“rl — ¥) +@(1) = e(x"*! — y), hence (2) holds.

(2) = (3) The proof is by induction on n. Suppose that (2) holds.

Firstly, for n = 1, o(x = x*) < o(x'*! — x?) = 0, we have ¢(x — x?) = 0.

Secondly, for n = 2, then p(x> — x*) = (x> = (x = x*)) < o(x* = (x* = x*) = ¢(1) = 0, hence
o(x> = x*) = 0. From p(x* = x*) < o(x* = x*) = 0, we get (x> = x*) = 0.

Finally, for n > 2, from x"*! — (x*! — x?*) = 1, we obtain that p(x" — ("' — x*)) < (X" —
(X1 = x?)) = 0, and so p(x" — ("1 — x*)) = 0, that is (x"~' — (x* — x*")) = 0. By using the
hypothesis 7 times, then we get p(x" ™" — (x" — x*")) = 0, and so p(x" — x**) = 0.

(3) = @) Forany x,y,ze Hywehave x" > (y -2 ) <" > (X" =2y > (" - 2)=x" > " -
(= )>D=x" > ("> 2D > ) > (@ > (X" >y -2 =" > x>
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(x" = ((x" = y) = z)). Since ¢ is a pseudo valuation on H and ¢(x" — x>*) = 0, it follows that p((x" —
Y) = (" > 2) <o = )+ (" > ) - (- ("> y) o) = e( > X)) o (o
(X" = y) = 2))) < p(x* = (y = 2)), which means that o((x" = y) = (" = 2)) < (X" = (y = 2)).

(4) = (1) Since ¢ is a pseudo valuation on H, we get that o(x" — 7) < (x" = y) + ((x* = y) —
(X" = 2) <p(x" = y) + (X" = (y = 2)), therefore ¢ is a n-fold implicative pseudo valuation on H.

n+1

Proposition 3.6. If ¢ is a n-fold implicative pseudo valuation on H, then p(x* — y) = @(x
any x,y € H.

— y) for

Proor. According to Theorem 3.5, we get p(x" — y) < o(x"*! — y). As for the reverse inequality, from
X' =y <X -y, we have (X! — y) < o(x" — y) by Proposition 2.4. Thus ¢(x" — y) = @(x"*!
)

—

From Theorem 3.5, if ¢ is a n-fold implicative pseudo valuation on H, then o((x" = y) = (x" = 2)) <
¢(x" = (y — 2)). And notice that (x" — y) = (x" — z) < x" — (y — z) by Proposition 2.1 (6), we have
o(xX" = (y = 2)) < p((x" = y) = (" — 2)), so we get the following result.

Proposition 3.7. If ¢ is a n-fold implicative pseudo valuation on H, then o((x" — y) — (X" — 7)) =
e(x" = (y = 2)) for any x,y,z € H.

Lemma 3.8. Every n-fold implicative pseudo valuation ¢ on H is a (n + 1)-fold implicative pseudo valu-
ation.

Proor. If ¢ is a n-fold implicative pseudo valuation on H, then o(x™! — y) = o(x* —» (x = y)) <
o(xX"1 = (x = ¥)) = (x"*? = y, that is, p(x"*! = y) < (x"*? — y, hence ¢ is a (n + 1)-fold implicative
pseudo valuation by Theorem 3.5.

Using Lemma 3.8 and a simple induction argument, we obtain the following proposition.

Proposition 3.9. Let ¢ be a real-valued function of H and k € N — {0}. If ¢ is a n-fold implicative pseudo
valuation on H, then ¢ is (n + k)-fold implicative pseudo valuation.

In the follows, we will show that the shrinkage property for n-fold implicative pseudo valuations on a
hoop is valid.

Proposition 3.10. Let ¢ be a real-valued function on H and  be a pseudo valuation on H with < ¢,
that is, Yy(x) < @(x) for any x € H. If ¢ is a n-fold implicative pseudo valuation on H, then ¥ is also a
n-fold implicative pseudo valuation on H.

Proor. Since ¢ is a n-fold implicative pseudo valuation on H, then y(x* — x*") < p(x" — x*') = 0 for
any x € H. Consider that ¢ is a pseudo valuation on H, we get that y(x" — x*") > 0 by Proposition 2.4,
and therefore y(x" — x*') = 0, hence y is a n-fold implicative pseudo valuation on H.

Definition 3.11. Let f be a mapping from an hoop H; into a hoop H,, and ¢, be real-valued function
on Hy and H,, respectively. Then

(1) the preimage f~'(y) of H, under f is defined as f~'(¥)(x) = y(f(x)), for any x € Hy;
(2) the image f(¢) of ¢ under f is defined as

infle(lf(0) =yh ) #0,

0, otherwise.

F@)y) = {

Theorem 3.12. Let ¢, be n-fold implicative pseudo valuations on H, and H,, respectively.

(1) If f : H — H, be a hoop-homomorphism, then the preimage f~'(¥) is a n-fold implicative pseudo
valuation on H;.
(2) If f is a hoop-epimorphism, then the image f(¢) is a n-fold implicative pseudo valuation on H;.
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Proor. It is easy to prove that f~!(y) and f(¢) are pseudo valuations on H, and H», respectively.

(D) f W) = 2 = Y (f(X" = X)) = Y(f(x)" = f(x)*") = 0, hence £~ () is a n-fold implicative
pseudo valuation on H;.

(2) Since ¢ is a n-fold implicative pseudo valuations on H; and f is a hoop-epimorphism, For any
y € H,, then there exists x € H; such that f(x) = y. It follows that f(¢)(y" — y*") = inf{e(z)|f(2) = y* =
¥,z € Hy) = inflp@2)|f () = f(0)" = f(0)™,z € H1) = inflp@)|f(2) = f(x* = x*"),z € H} = 0, and
hence f(y) is a n-fold implicative pseudo valuation on H,.
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