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Abstract:-      Let  EN( T; Φ’ , Φ’’ )  denote  the  average  number  of  real  zeros  

of  the  random  trigonometric  polynomial 

 

                              T=Tn( Φ, ω )=
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In the interval (Φ’ , Φ’’ ). Assuming that  ak(ω ) are  independent  random  

variables  identically  distributed  according  to  the  normal  law  and  that  bk = kp  

(p ≥ 0)  are  positive  constants, we  show  that 
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Outside  an  exceptional  set  of  measure  at  most  (2/ n )  where  
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 1 . Introduction 

 

Let  N( T ; Φ’ , Φ’’ )  be  the  number  of  real  zeros  of  trigonometric  

polynomial    T = Tn ( Φ, ω ) =
   kba K

n

K
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                     ( 1 ) 

In  the  interval ( Φ’ , Φ’’ )  where  the  coefficients  ak(ω)  are  mutually  

independent  random  variables  identically  distributed  according  to  the  normal  

law ; bk=kp  are  positive  constants  and  when  multiple  zeros  are  counted  only  

once . Let  EN ( T ;  Φ’ , Φ’’ )  denote  the  expectation  of  N ( T ;  Φ’ , Φ’’ ).  

Obviously , Tn ( Φ, ω ) can  have  at  most  2n  most  zeros  in  the  interval  

(0 , 2π )   Das [ 1 ] studied  the  class  of  polynomials                 
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where gk  are  independent  normal  random  variables  for  fixed  p > -1/2  and  

proved  that  in the  interval (0 , 2π) the  function (2)  have 

                                      )(23212
1

13
4

13
11

2
1 


q

nOnpp  

 

number  of  real  roots  when  n is  large . Here , q= max(0, -p) and 

  .211321 q . The  measure  of  exceptional  set  does  not  exceed  n-21 

 

           Das [2 ] took  the  polynomial  (1) where  aK(ω ) are  independent  normal  

random  variables  identically  distributed  with  mean  zero  and  variance  one . 

He proves  that  in  the  interval  0 ≤ θ ≤ 2π , the  average  number  of  real  zeros  

of  polynomials ( 1 )  is  

                      [(2p+1) / (2p+3) ]1/22n+O( n )                                                    ( 3 ) 

 

for bK = kp( p > -1/2 ) and  of the  order of np+3/2 if  -3/2  ≤ p ≤ -1/2 for  large  n. 

 

                In this  paper  we  consider  the  polynomial  (1) with  conditions  as  in 

DAS [2]  and  use  the  Kac_Rice  formula  for  the  expectation  of  the  number  

of  real  zeros  and  obtain  that  for  p ≥ 0  
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Where 
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Our  asymptotic  estimate  implies  that  Das’s  estimate  in [1]  is  approached  

from  below . Also  our  term  is  smaller . 

 

                The  particular  case  for  p=0  has  been  considered  by  Dunnage [3] 

and  Pratihari  and  Bhanja [4] . Dunnage  has  shown  that  in  the  interval  0 ≤ 

θ ≤ 2π  all  save  a  certain  exceptional  set  of  the  functions  Tn( Φ, ω ) have 
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zeros  when n is large . The  measure  of  the  exceptional  set  does  not  

exceed ( logn )-1 .    Using  the  kac_rice  formula  we  tried  to  obtain  in  [4]  that 

          

                                    EN ( T ;  0 , 2π ) ~    )(log
6

2
nO

n
  

Professor  Dunnage[ 5 ]  comments  that  our  result  is  incorrect  .he  is  quite  

right  when  he  says  than  an  asymptotic  estimate  is  unique  and  that  both  

results (4)  and  (5)  cannot  be  correct . But  in  his  calculations  given  in  

paragraph  4  of [5]  he  seems  to  have  imported  a  factor  2  and  the  correct  

calculation  would  give  I’~  2πn / √3 . accepting  his  own  statement  in  

paragraph  3  that  I < I’ , our  point  is  clear . However , since  I’ ~  2πn / √3 on  

direct  integration , our  estimation  of  EN  as  found  in  [4] , contained  in  the  

statement (5) above ,  must  be  wrong .  We  are  sorry  about  our  mistake . In  

this  paper  we  consider  our  original  integral  I  and  evaluate  it  directly  

instead  of  placing  it  between  two  integrals  as  in  [4] , the  second  one  

being  possibly  suspect . This  rectification eventually  raises  our  estimate  for  

EN  but , all  the  same , keeps  it  below  Dunnage’s  estimate  stated  in  above . 

The  purport  of   our  result  is  that  EN  approaches  the  value  2n / √3  from  

below . This  is  something  meaningful . We prove  the  following  theorem . 
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Theorem . The  average  number  of  real  zeros  in  the  interval (0, 2π )  of  the  

class  of  random  trigonometric  polynomials  of  the  form   
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where  aK( ω )  are  mutually  independent  random  variables  identically  

distributed  according  to  normal  law  with  mean  zero  and  variance  one  and  

bK=kp ( p ≥ 0)  are  positive  constants , is  asymptotically  equal  to   
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outside  an  exceptional  set  of  measure  at  most ( 2 / n) where   
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                  2 . The  Approximation  for  EN ( T ;  0 , 2π ) 

 

Let  L ( n )  be  a  positive-valued  function  of  n  such  that L(n) and  n/ L(n) both  

approach  infinity  with  n . We take  =L(n)/n  throughout. 

   Outside  a small  exceptional  set  of  ω, Tn( θ ,ω )  has  a negligible  number of 

zeros in  each  of the intervals (0, ) ,( π-, π+) and (2π-,2π). By  periodicity 

,  of  zeros  in  each  of  intervals (0, ) and (2π-,2π) is  the  same  as  number  

in (-,). We shall  use  the  following  lemma , which  is  due  to  Das [2] . 

 

 Lemma. The probability that T has more than 1 + (log n)-1(logn+logDn+4n) 

Zeros  in  ω-≤ θ ≤ ω+ does  not  exceed  2 exp(-n) ,where 
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The steps  in  this  section  follow  closely  those  in  section  2  of [4] .  therefore , 

we  indicate  only  the  modifications  necessary .  In  this  case  we  have  
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And finally 

 

 

 

             (6) 

 

 

 

for fixed  non-zero  real  constants  A and  B  to  be  chosen . 

 

              3 . Estimation  of  the  integral  of  equation ( 6 ) 

 

Consider  the  integral 
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Which  exists  in  general  as  a  principal  value  if   
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As in Das[ 2 ] ,letting  bk = kp(p ≥ 0)  we  get 
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                 Say       (  β = constant ) 

 

outside  the  set { 0 , π ,  2π,  … } of  the  values  of  θ , AB > C2 . We have  
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Where  c=(C/A) and  b=(B/A) . now  by  integration  by  parts , 
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When  X→∞ , we have 
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Now  the  result  follows  from  the  section  4  of  [4] , choosing  L(n) =log n. the  

cases  where  -1/2 < p < 0  and  p= -1/2 can be  similarly  dealt  with  and  results  

can  be  obtained  to  show  that  Das’s  estimates  are  approached  from  below 
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