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Abstract. In this paper, we present the least value α and the greatest value β such that the

double inequality

αA(a, b) + (1− α)T (a, b) < M(a, b) < βA(a, b) + (1− β)T (a, b)

hold for all a, b > 0 with a 6= b, where A(a, b),M(a, b) and T (a, b) are the arithmetic, Neuman-

Sándor and second Seiffert means of a and b, respectively.

1. Introduction

For a, b > 0 with a 6= b the Neuman-Sándor mean M(a, b)[1] was defined by

M(a, b) =
a− b

2 sinh−1(
a− b
a+ b

)

,
(1.1)

where sinh−1(x) = log(x+
√

1 + x2) is the inverse hyperbolic sine function.

Recently, the Neuman-Sándor mean has been the subject of intensive research. In partic-

ular, many remarkable inequalities for the Neuman-Sándor mean M(a, b) can be found in the

literature [1,2].

Let H(a, b) = (2ab)/(a+ b), G(a, b) =
√
ab, L(a, b) = (a− b)/(log a− log b), P (a, b) = (a−

b)/(4 tan−1
√
a/b−π), A(a, b) = (a+ b)/2, T (a, b) = (a− b)/[2 tan−1(a− b)/(a+ b)], Q(a, b) =√

(a2 + b2)/2 and C(a, b) = (a2+b2)/(a+b) be the harmonic, geometric, logarithmic, first Seif-

fert, arithmetic, second Seiffert, quadratic and contra-harmonic means of a and b, respectively.

Then
min{a, b} < H(a, b) < G(a, b) < L(a, b) < P (a, b) < A(a, b)

< M(a, b) < T (a, b) < Q(a, b) < C(a, b) < max{a, b}
hold for all a, b > 0 with a 6= b.

Neuman and Sándor [1, 2] proved that the inequalities

π

4 log (1 +
√

2)
I(a, b) < M(a, b) <

A(a, b)

log (1 +
√

2)
,

√
2T 2(a, b)−Q2(a, b) < M(a, b) <

T 2(a, b)

Q2(a, b)
,
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H(T (a, b), A(a, b)) < M(a, b) < L(A(a, b), Q(a, b)),

T (a, b) > H(M(a, b), Q(a, b)), M(a, b) <
A2(a, b)

P (a, b)
,

A2/3(a, b)Q1/3(a, b) < M(a, b) <
2A(a, b) +Q(a, b)

3
,√

A(a, b)T (a, b) < M(a, b) <
√
A2(a, b) + T 2(a, b),

G(x, y)

G(1− x, 1− y)
<

L(x, y)

L(1− x, 1− y)
<

P (x, y)

P (1− x, 1− y)

<
A(x, y)

A(1− x, 1− y)
<

M(x, y)

M(1− x, 1− y)
<

T (x, y)

T (1− x, 1− y)
,

1

A(1− x, 1− y)
− 1

A(x, y)
<

1

M(1− x, 1− y)
− 1

M(x, y)
<

1

T (1− x, 1− y)
− 1

T (x, y)
,

A(x, y)A(1− x, 1− y) < M(x, y)M(1− x, 1− y) < T (x, y)T (1− x, 1− y)

hold for all a, b > 0 and x, y ∈ (0, 1/2) with a 6= b and x 6= y.

Li et al. [3] showed that the double inequality

Lp0(a, b) < M(a, b) < L2(a, b)

holds for all a, b > 0 with a 6= b, where Lp(a, b) = [(ap+1− bp+1)/((p+ 1)(a− b))]1/p(p 6= −1, 0),

L0(a, b) = 1/e(aa/bb)1/(a−b) and L−1(a, b) = (a − b)/(log a − log b) is the p-th generalized

logarithmic mean of a and b, and p0 = 1.843 · · · is the unique solution of the equation (p+1)1/p =

2 log(1 +
√

2).

In [4], Neuman proved that the double inequalities

αQ(a, b) + (1− α)A(a, b) < M(a, b) < βQ(a, b) + (1− β)A(a, b)

and

λC(a, b) + (1− λ)A(a, b) < M(a, b) < µC(a, b) + (1− µ)A(a, b)

hold for all a, b > 0 with a 6= b if and only if α ≤ [1 − log(1 +
√

2)]/[(
√

2 − 1) log(1 +
√

2)] =

0.3249 · · · , β ≥ 1/3, λ ≤ [1− log(1 +
√

2)]/ log(1 +
√

2) = 0.1345 · · · and µ ≥ 1/6.

In [5], Yuming Chu etc proved that the double inequalities

α1L(a, b) + (1− α1)Q(a, b) < M(a, b) < β1L(a, b) + (1− β1)Q(a, b)

and

α2L(a, b) + (1− α2)C(a, b) < M(a, b) < β2L(a, b) + (1− β2)C(a, b)

hold for all a, b > 0 with a 6= b if and only if α1 ≥ 2/5, β1 ≤ 1 − 1/[
√

2 log(1 +
√

2)] =

0.1977 · · · , α2 ≥ 5/8 and β2 ≤ 1− 1/[2 log(1 +
√

2)] = 0.4327 · · · .
In addition, inequalities for quotients involving the Neuman-Sándor mean M(a,b) were ob-

tained in [6].

The main purpose of this paper is to find the least value α and the greatest value β such

that the double inequality

αA(a, b) + (1− α)T (a, b) < M(a, b) < βA(a, b) + (1− β)T (a, b)

holds for all a, b > 0 with a 6= b. All numerical computations are carried out using the

mathematical calculation software.

2. Lemmas

In order to establish our main results we need several lemmas, which we present in this
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section.

Lemmas 1. Let µ = 1/(4− π)[4− π/ log(1 +
√

2)] = 0.5074 · · · , p ∈ {1/2, µ}, and ωp(t) =

(p− 1)3t4 + (1− p)2(1− 10p)t3 + (1− p)(8p2 − 14p+ 1)t2 + (4p2 − 2p+ 3)t+ 2(2p+ 1). Then

ωp(t) > 0 holds for all t ∈ (0, 1).

Proof. Simple computations lead to

lim
t→0+

ωp(t) = 2(2p+ 1) > 0, lim
t→1−

ωp(t) = (2− p)(19p2 − 12p+ 4) > 0, (2.1)

lim
t→0+

ω′p(t) = 4p2 − 2p+ 3 > 0, lim
t→1−

ω′p(t) = (3− 2p)(25p2 − 24p+ 4) < 0, (2.2)

lim
t→0+

ω′′p (t) = 2(1− p)(8p2 − 14p+ 1) < 0, (2.3)

and

ω′′′p (t) = 6[4(p− 1)3t+ (1− p)2(1− 10p)] < 0 (2.4)

for t ∈ (0, 1). (2.3) and (2.4) imply that ω′p(t) is strictly decreasing in (0, 1). It follows from

(2.2) and the monotonicity of ω′p(t) that there exists t0 ∈ (0, 1) such that ω′p(t) > 0 for t ∈ (0, t0)

and ω′p(t) < 0 for t ∈ (t0, 1), hence ωp(t) is strictly increasing in (0, t0) and strictly decreasing in

(t0, 1). Therefore the conclusion of lemma 1 is educed from (2.1) the monotonicity of ωp(t).

Lemmas 2. Let µ = 1/(4− π)[4− π/ log(1 +
√

2)] = 0.5074 · · · , p ∈ {1/2, µ}, and υp(t) =

2[2(1− p)2t3 + 5(1− p)2t2 + 2(p2 − 3p+ 1)t− (2p+ 1)]. Then υp(t) < 0 holds for all t ∈ (0, 1).

Proof. Simple computations yield

lim
t→0+

υp(t) = −2(2p+ 1) < 0, lim
t→1−

υp(t) = 2(p− 2)(9p− 4) < 0, (2.5)

lim
t→0+

υ′p(t) = 4(p2 − 3p+ 1) < 0, lim
t→1−

υ′p(t) = 4(9p2 − 19p+ 9) > 0, (2.6)

and

υ′′p (t) = 4(1− p)2(6t+ 5) > 0 (2.7)

holds for all t ∈ (0, 1). From (2.7) we know that υ′p(t) is strictly increasing in (0, 1).

It follows from (2.6) and the monotonicity of υ′p(t) that there exists t1 ∈ (0, 1) such that

υ′p(t) < 0 for t ∈ (0, t1) and υ′p(t) > 0 for t ∈ (t1, 1), hence υp(t) is strictly decreasing in (0, t1)

and strictly increasing in (t1, 1). Therefore the conclusion of lemma 2 is elicited from (2.5) and

the monotonicity of υp(t).

Lemmas 3. Let µ = 1/(4− π)[4− π/ log(1 +
√

2)] = 0.5074 · · · , and Lµ(t) = (1− µ)6t7 +

2(1− µ)4(10µ2 − 11µ− 7)t6 + (1− µ)4(116µ2 − 48µ− 93)t5 + 4(1− µ)2(40µ4 − 116µ3 + 36µ2 +

99µ− 51)t4 + (1−µ)2(64µ4− 304µ3 + 40µ2 + 480µ− 185)t3− 2(32µ5− 16µ4− 240µ3 + 398µ2−
181µ + 15)t2 − (64µ4 − 336µ3 + 380µ2 − 16µ − 53)t + 8(1 + 2µ)(1 − 2µ)(3 − 2µ). Then there

exists η2 ∈ (0, 1) such that Lµ(t) < 0 for t ∈ (0, η2) and Lµ(t) > 0 for t ∈ (η2, 1).

Proof. By calculating first-sixth derived functions of Lµ(t) and the numerical computations

we know that L
(6)
µ (t) < 0 for t ∈ (0, 1), and Lµ(0) < 0, Lµ(1) > 0, L′µ(0) > 0, L′µ(1) >

0, L′′µ(0) > 0, L′′µ(1) < 0, L′′′µ (0) > 0, L′′′µ (1) < 0, L
(4)
µ (0) < 0, L

(5)
µ (0) < 0. Apparently

L
(4)
µ (0) < 0, L

(5)
µ (0) < 0 and L

(6)
µ (t) < 0 imply that L′′′µ (t) is strictly decreasing in (0, 1).

It follows from L′′′µ (0) > 0 and L′′′µ (1) < 0 together with the monotonicity of L′′′µ (t) that

there exists η0 ∈ (0, 1) such that L′′′µ (t) > 0 for t ∈ (0, η0) and L′′′µ (t) < 0 for t ∈ (η0, 1), so
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L′′µ(t) is strictly increasing in (0, η0) and strictly decreasing in (η0, 1). From L′′µ(0) > 0 and

L′′µ(1) < 0 together with the monotonicity of L′′µ(t) we know that there exists η1 ∈ (η0, 1)

such that L′′µ(t) > 0 for t ∈ (0, η1) and L′′µ(t) < 0 for t ∈ (η1, 1), hence L′µ(t) is strictly

increasing in (0, η1) and strictly decreasing in (η1, 1). L′µ(0) > 0 and L′µ(1) > 0 together with

the monotonicity of L′µ(t) imply that L′µ(t) > 0 for t ∈ (0, 1), thus Lµ(t) is strictly increasing

in (0, 1). Therefore the conclusion of lemma 3 follows from Lµ(0) < 0 and Lµ(1) > 0 together

with the monotonicity of Lµ(t).

3. Main Results

theorem. The double inequality

αA(a, b) + (1− α)T (a, b) < M(a, b) < βA(a, b) + (1− β)T (a, b) (3.1)

holds true for a, b > 0 with a 6= b if and only if α ≥ 1/(4− π)[4− π/ log(1 +
√

2)] = 0.5074 · · ·
and β ≤ 1/2.

Proof. Let µ = 1/(4− π)[4− π/ log(1 +
√

2)] = 0.5074 · · · . Firstly we prove that
1

2
[A(a, b) + T (a, b)] > M(a, b), (3.2)

and

µA(a, b) + (1− µ)T (a, b) < M(a, b). (3.3)

Without loss of generality, we assume that a > b > 0. Let x = (a− b)/(a + b) ∈ (0, 1) and

p ∈ {1/2, µ}. Then
M(a, b)

A(a, b)
=

x

sinh−1(x)
,
T (a, b)

A(a, b)
=

x

tan−1 x
, (3.4)

and
pA(a, b) + (1− p)T (a, b)−M(a, b)

A(a, b)
=

Ep(x)

log (x+
√

1 + x2) tan−1 x
, (3.5)

where

Ep(x) = p tan−1 x log (x+
√

1 + x2) + (1− p)x log (x+
√

1 + x2)− x tan−1 x. (3.6)

Some tedious, but not difficult, calculations lead to

lim
x→0+

Ep(x) = 0, (3.7)

lim
x→1−

Ep(x) = [(
π

4
− 1)p+ 1] log(1 +

√
2)− π

4
, (3.8)

E′p(x) =
[1 + (1− p)x2]Gp(x)

1 + x2
, (3.9)

where

Gp(x) =
p(tan−1 x− px+ x)

√
1 + x2 − (1 + x2) tan−1 x− x

1 + (1− p)x2
+ log (x+

√
1 + x2), (3.10)

lim
x→0+

Gp(x) = 0, (3.11)

lim
x→1−

Gp(x) = log(1 +
√

2) +
(π − 4)

√
2p+ 2(2

√
2− π − 2)

4(2− p)
, (3.12)

G′p(x) =
px[(1− 2p) + (1− p)x2 + 2

√
1 + x2]Hp(x)

[1 + (1− p)x2]2
√

1 + x2
, (3.13)
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where

Hp(x) =
(1− p)2x4 + (3− 2p2 − p)x2 − 2

√
1 + x2 + 2

px[(1− 2p) + (1− p)x2 + 2
√

1 + x2]
− tan−1 x, (3.14)

lim
x→0+

Hp(x) = 0, (3.15)

lim
x→1−

Hp(x) =
2(3−

√
2)− p(p+ 3)

p(2 + 2
√

2− 3p)
− π

4
, (3.16)

and

H ′p(x) =
Kp(x)

px2(1 + x2)[(1− 2p) + (1− p)x2 + 2
√

1 + x2]2
, (3.17)

where

Kp(x) = (p− 1)3x8 + (1− p)2(1− 10p)x6 + (1− p)(8p2 − 14p+ 1)x4

+(4p2 − 2p+ 3)x2 + 2(2p+ 1) + [4(p− 1)2x6 + 10(1− p)2

·(1− 10p)x4 + 4(p2 − 3p+ 1)x2 − 2(2p+ 1)]
√

1 + x2.

(3.18)

Let x =
√
t (t ∈ (0, 1)), then

Kp(x) = ωp(t) + υp(t)
√

1 + t =
tLp(t)

ωp(t)− υp(t)
√

1 + t
, (3.19)

where ωp(t) and υp(t) are defined as in lemmas 1 and 2, respectively, and

Lp(t) = (1− p)6t7 + 2(1− p)4(10p2 − 11p− 7)t6 + (1− p)4(116p2 − 48p− 93)t5

+4(1− p)2(40p4 − 116p3 + 36p2 + 99p− 51)t4 + (1− p)2(64p4 − 304p3

+40p2 + 480p− 185)t3 − 2(32p5 − 16p4 − 240p3 + 398p2 − 181p+ 15)t2

−(64p4 − 336p3 + 380p2 − 16p− 53)t+ 8(1 + 2p)(1− 2p)(3− 2p).

(3.20)

Now we distinguish between two cases:

Case 1. p = 1/2. (3.20) leads to

L1/2(t) =
1

64
t(t+ 2)2[t4 + 84t2(1− t) + 104t(1− t) + 8(3t+ 8)] > 0, (3.21)

holds for all t ∈ (0, 1). This fact and (3.19), (3.17) together with lemmas 1 and 2 imply that

H ′1/2(x) > 0 for x ∈ (0, 1), hence H1/2(x) is strictly increasing in (0, 1). Therefore the inequality

(3.2) follows from (3.5), (3.7), (3.9), (3.11), (3.13) and (3.15) together with the monotonicity

of H1/2(x).

Case 2. p = µ. Here (3.20) becomes Lµ(t), which is defined as in lemma 3. By (3.19) and

the conclusions of lemmas 1− 3 we confirm that Kµ(x) < 0 for x ∈ (0, x0) and Kµ(x) > 0 for

x ∈ (x0, 1), where x0 =
√
η2. This fact and (3.18) imply that H ′µ(x) < 0 for x ∈ (0, x0) and

H ′µ(x) > 0 for x ∈ (x0, 1), hence Hµ(x) is strictly decreasing in (0, x0) and strictly increasing

in (x0, 1).

Notice that (3.8), (3.12) and (3.16) become

lim
x→1−

Eµ(x) = 0, lim
x→1−

Gµ(x) = 0.0033 · · · > 0, lim
x→1−

Hµ(x) = 0.0442 · · · > 0, (3.22)

respectively. It follows from (3.22), (3.15), (3.13), (3.11), (3.9) and (3.7) together with the

monotonicity of Hµ(x) that

Eµ(x) < 0 (3.23)

for x ∈ (0, 1). Therefore the inequality (3.3) follows from (3.5) and (3.23).

Finally, we prove that µA(a, b)+(1−µ)T (a, b) is the best possible lower convex combination

bound and 1/2[A(a, b) + T (a, b)] is the best possible upper convex combination bound of the
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arithmetic and the second Seiffert means for the Neuman-Sándor mean.

Equations (3,4) lead to

T (a, b)−M(a, b)

T (a, b)−A(a, b)
=
x/ tan−1 x− x/ sinh−1(x)

x/ tan−1 x− 1
= R(x). (3.24)

From (3.23) one has

lim
x→1−

R(x) = µ, (3.25)

and

lim
x→0+

R(x) =
1

2
. (3.26)

If α < µ, then (3.24) and (3.25) lead to the conclusion that there exists 0 < δ1 < 1 such

that M(a, b) < αA(a, b) + (1− α)T (a, b) for all a, b > 0 with (a− b)/(a+ b) ∈ (δ1, 1).

If β > 1/2, then (3.24) and (3.26) lead to the conclusion that there exists 0 < δ2 < 1 such

that M(a, b) > βA(a, b) + (1− β)T (a, b) for all a, b > 0 with (a− b)/(a+ b) ∈ (0, δ2).

Remark. In [7], we proved that the double inequality

αG(a, b) + (1− α)T (a, b) < M(a, b) < βG(a, b) + (1− β)T (a, b) (3.27)

holds true for a, b > 0 with a 6= b if and only if α ≥ 1/5 and β ≤ 1 − π/[4 log(1 +
√

2)] =

0.108893 · · · .
The bounds in the double inequalities (3.1) and (3.27) are not comparable to each other.

In fact, if we let a > b > 0 and x =
√
a/b > 1, and notate λ = 1 − π/[4 log(1 +

√
2)] and

ω = 1/(4− π)[4− π/ log(1 +
√

2)], then

[
1

2
A(a, b) +

1

2
T (a, b)]− [λG(a, b) + (1− λ)T (a, b)] =

b

tan−1
x2 − 1

x2 + 1

F1(x) (3.28)

and

[ωA(a, b) + (1− ω)T (a, b)]− [
1

5
G(a, b) +

4

5
T (a, b)] =

b

tan−1
x2 − 1

x2 + 1

F2(x), (3.29)

where

F1(x) =

(
x2

4
− λx+

1

4

)
tan−1

x2 − 1

x2 + 1
+

2λ− 1

4
(x2 − 1) (3.30)

and

F2(x) =

[
ω(x2 + 1)

2
− x

5

]
tan−1

x2 − 1

x2 + 1
− ω(x2 − 1)

2
+
x2 − 1

10
, (3.31)

respectively. Simple computations yield

F1(1) = F ′1(1) = F ′′1 (1) = 0, F ′′′1 (1) = 5λ− 1 = −0.4555 · · · < 0, (3.32)

lim
x→+∞

F1(x) = lim
t→0+

(t2 − 4λt+ 1) tan−1
1− t2

t2 + 1
+ (1− 2λ)(t2 − 1)

4t2
= +∞, (3.33)

F2(1) = F ′2(1) = F ′′2 (1) = 0, F ′′′2 (1) = 1− 2ω = −0.0148 · · · < 0, (3.34)

and

lim
x→+∞

F2(x) = lim
t→0+

[5ω(t2 + 1)− 2t] tan−1
1− t2

t2 + 1
+ (1− 5ω)(1− t2)

10t2
= +∞. (3.35)

IJRDO-Journal of Mathematics                             ISSN: 2455-9210

Volume-2 | Issue-12 | December,2016 | Paper-2 22            



7

Equations (3.28), (3.32) and (3.33) imply that there exist small enough δ1 > 0 and large

enoughX1 > 0 such that 1/2A(a, b)+1/2T (a, b) < λG(a, b)+(1−λ)T (a, b) for
√
a/b ∈ (1, 1+δ1),

and 1/2A(a, b) + 1/2T (a, b) > λG(a, b) + (1− λ)T (a, b) for
√
a/b ∈ (X1,+∞).

Equations (3.29), (3.34) and (3.35) imply that there exist small enough δ2 > 0 and large

enough X2 > 0 such that ωA(a, b) + (1 − ω)T (a, b) < 1/5G(a, b) + 4/5T (a, b) for
√
a/b ∈

(1, 1 + δ2), and ωA(a, b) + (1− ω)T (a, b) > 1/5G(a, b) + 4/5T (a, b) for
√
a/b ∈ (X2,+∞).
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