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Software defects are expensive in quality and cost. The accurate prediction of defect-prone software modules can 

help direct test effort, reduce costs, and improve the quality of software. Machine learning classification algorithms 

is a popular approach for predicting software defect. Various types of classification algorithms have been applied for 

software defect prediction. However, no clear consensus on which algorithm perform best when individual studies 

are looked at separately. In this research, a comparison framework is proposed, which aims to benchmark the 

performance of a wide range of classification models within the field of software defect prediction. For the purpose 

of this study, 10 classifiers are selected and applied to build classification models and test their performance in 9 

NASA MDP datasets. Area under curve (AUC) is employed as an accuracy indicator in our framework to evaluate 

the performance of classifiers. Friedman and Nemenyi post hoc tests are used to test for significance of AUC 

differences between classifiers. The results show that the logistic regression perform best in most NASA MDP 

datasets. Naïve bayes, neural network, support vector machine and k* classifiers also perform well. Decision tree 

based classifiers tend to underperform, as well as linear discriminant analysis and k-nearest neighbor. 
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1. INTRODUCTION 

 

A software defect is an error, failure, or fault in a software [1], that produces an incorrect 

or unexpected result, or causes it to behave in unintended ways. It is a deficiency in a 

software product that causes it to perform unexpectedly [2]. Software defects or software 

faults are expensive in quality and cost. Moreover, the cost of capturing and correcting 

defects is one of the most expensive software development activities [3]. Recent studies 

show that the probability of detection through defect prediction models may be higher 

than the probability of detection through software reviews [4]. The accurate prediction of 

defect‐prone software modules can certainly assist testing effort, reduce costs and 

improve the quality of software [5].  
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Classification algorithm is a popular machine learning approach for software defect 

prediction. It categorizes the software code attributes into defective or not defective, 

which is collected from previous development projects. Classification algorithm is also 

able to predict which components are more likely to be defect-prone, supports better 

targeted testing resources and therefore, improved efficiency. For prediction modeling, 

software metrics are used as independent variables and fault data is used as the dependent 

variable [6]. A wide range of classification techniques have already been proposed in the 

predicting software defect. Since 1990, more than 20 classification algorithms have been 

applied and proposed as the best method for predicting the software defect, including 

logistic regression (LR) [7], decision trees (DT) [8], neural network (NN) [9], naive bayes 

(NB) [10], and etc. 

 

While many studies individually report the comparative performance of the modelling 

techniques they have used, no clear consensus on which perform best emerges when 

individual studies are looked at separately. Bibi et al. [11] report that regression via 

classification (RvC) works well. Hall et al. [5] suggests that studies using support vector 

machine (SVM) techniques perform less well. These may be underperforming as they 

require parameter optimization for best performance. Models based on C4.5 seem to 

underperform if they use imbalanced data [12] [13], as the algorithm seems to be sensitive 

to this. NB and LR, in particular, seem to be the techniques used in models that are 

performing relatively well overall [10] [14]. NB is a well understood algorithm that is in 

common use. Studies using random forests (RF) have not performed as well as might be 

expected [5], although many studies using NASA dataset use RF and report good 

performances [15]. However, models seem to have performed best where the right 

technique has been selected for the right set of data. No particular classifiers that performs 

the best for all the datasets [14]. 

However, we need to develop more reliable research procedures before we can have 

confidence in the conclusion of comparative studies of software prediction models [15] 

[14] [4]. In this research, we propose a comparison framework, which aims to benchmark 

the performance of a wide range of classification models within the field of software 

defect prediction. 
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This paper is organized as follows. In section 2, the proposed comparison framework is 

explained. The experimental results of classification models comparison are presented in 

section 3. Finally, our work of this paper is summarized in the last section. 

 

2. PROPOSED COMPARISON FRAMEWORK 

The proposed framework is shown in Figure 1. The framework is comprised of 1) a 

dataset 2) a classification algorithms, 3) a model validation, 4) a model evaluation and 5) 

a model comparison. 

2.1 Dataset 

One of the most important problems for software fault prediction studies is the usage of 

nonpublic (private) datasets. Several companies developed fault prediction models using 

proprietary data and presented these models in conferences. However, it is not possible to 

compare results of such studies with results of our own models because their datasets 

cannot be reached. The use of public datasets makes our research repeatable, refutable, 

and verifiable [16]. Recently, state-of-the-art public datasets used for software defect 

prediction research is available in NASA Metrics Data (MDP) repository [17]. 

 

The data used in the proposed framework are collected from the NASA MDP repository. 

NASA MDP repository is a database that stores problem, product, and metrics data [17]. 

Each NASA dataset is comprised of several software modules, together with their number 

of faults and characteristic code attributes. After preprocessing, modules that contain one 

or more errors were labeled as fault-prone, whereas error-free modules were categorized 

as not-fault-prone. Besides line of codes (LOC) counts, the NASA MDP datasets include 

several Halstead attributes [18] as well as McCabe complexity measures [19]. The former 

estimates reading complexity by counting operators and operands in a module, whereas 

the latter is derived from a module’s flow graph. Some researchers endorse the static code 

attributes defined by McCabe and Halstead as defect predictors in the software defect 

prediction. McCabe and Halstead are module-based metrics, where a module is the 

smallest unit of functionality. Static code attributes are used as defect predictors, since 

they are useful, generalizable, easy to use, and widely used 
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Fig. 1. Proposed Comparison Framework of Classification Models for Software Defect Prediction 
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In this research, we use nine software defect datasets from NASA MDP. Individual 

attributes per dataset, together with some general statistics and descriptions, are given in 

Table 1. These datasets have various scales of LOC, various software modules coded by 

several different programming languages including C, C++ and Java, and various types of 

code metrics including code size, Halstead’s complexity and McCabe’s cyclomatic 

complexity. 

 

Table 1. Characteristics of NASA MDP Datasets 
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2.2 Classification Algorithms  
 

The proposed classification framework aims to compare the performance of a wide range of 

classification models within the field of software defect prediction. For the purpose of this study, 

10 classifiers have been selected, which may be grouped into the categories of traditional 

statistical classifiers (LR, LDA, and NB), nearest neighbors (k-NN and K*), NN, SVM, and 

decision tree (C4.5, CART, and RF). The selection aims at achieving a balance between 

established classification algorithms used in software defect prediction. 

 
2.3 Model Validation  

We use a stratified 10-fold cross-validation for learning and testing data. This means that we 

divide the training data into 10 equal parts and then perform the learning process 10 times. As 

shown in Table 2, each time, we chose another part of dataset for testing and used the remaining 

nine parts for learning. After, we calculated the average values and the deviation values from the 

ten different 

 

testing results. We employ the stratified 10-fold cross validation, because this method has 

become the standard and state-of-the-art validation method in practical terms. Some tests have 

also shown that the use of stratification improves results slightly [20]. 

Table 2. Stratified 10 Fold Cross Validation 

 

 

 

2.4 Model Evaluation  
We apply area under curve (AUC) as an accuracy indicator in our experiments to evaluate the 

performance of classifiers. AUC is area under ROC curve. Lessmann et al. [15] advocated the 

use of the AUC to improve cross-study comparability. The AUC has the potential to significantly 

improve convergence across empirical experiments in software defect prediction, because it 
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separates predictive performance from operating conditions, and represents a general measure of 

predictiveness. Furthermore, the AUC has a clear statistical interpretation. It measures the 

probability that a classifier ranks a randomly chosen fault-prone module higher than a randomly 

chosen non-fault-prone module. Consequently, any classifier achieving AUC well above 0.6 is 

demonstrably effective for identifying fault-prone modules and gives valuable advice as to which 

modules should receive particular attention in software testing. 

 

A rough guide for classifying the accuracy of a diagnostic test using AUC is the traditional 

system, presented by Gorunescu [21]. In the proposed framework, we added the symbols for 

easier interpretation and understanding of AUC (Table 3). 

 

Table 3. AUC value, Its Meaning and Symbols 
 
 
 
 
 
 
 
 
 
 

2.5 Model Comparison 

  
There are three families of statistical tests that can be used for comparing two or more 

classifiers over multiple datasets: parametric tests (the paired t-test and ANOVA), non-

parametric tests (the Wilcoxon and the Friedman test) and the non-parametric test that assumes 

no commensurability of the results (sign test). Demsar recommends the Friedman test for 

classifier comparisons, which relies on less restrictive assumptions [22]. Based on this 

recommendation, in our framework Friedman test is employed to compare the AUCs of the 

different classifiers. The Friedman test is based on the average ranked (R) performances of the 

classification algorithms on each dataset. 
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Let ri
j rank of the j-th of algorithms on the  i-th of D datasets The Friedman test compares the 

average rank of algorithm as 

 
Under the null-hypothesis, which states that all the algorithms are equivalent and so their ranks Rj 

should be equal.  The Friedman statistic is calculated as follows, and distributed according to XF
2 with c-1 degrees 

of freedom,  which D and  C are big enough. 
 
 
 
 
 

 

If the null-Hypothesis is rejected, we can proceed with a post-hoc test.  The Nemenyi test is used when 

all classifiers are compared to each other.  The performance of two classifiers is significantly different if 

the corresponding average ranks differ by at least the critical difference, given by 

 

 

With critical values qα  

3. EXPERIMENTAL RESULTS  
The experiments were conducted using a computing platform based on Intel Core i7 2.2 GHz 

CPU, 16 GB RAM, and Microsoft Windows 7 Professional 64-bit with SP1 operating system. 

The development environment is Netbeans 7 IDE, Java programming language, and RapidMiner 

5.2 library. We used the default parameter settings provide my RapidMiner 5.2 library. 

 

We conducted experiments on 9 NASA MDP datasets by using 10 classification algorithms. 

Table 4 reports the AUCs of all classification algorithms. The last column of Table 4 reports the 

mean rank of each classifier over all datasets, which constitutes the basis of the Friedman test. 
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Table 4. AUC of 10 Classification Models on 9 Datasets 

 

 

 

 
 

 

The best classification model on each dataset is highlighted with boldfaced print. Table 4 

shows that LR algorithm has the highest Friedman score (R). In statistical 

 

significance testing the P-value is the probability of obtaining a test statistic at least as extreme 

as the one that was actually observed, assuming that the null hypothesis is true. One often 

"rejects the null hypothesis" when the P-value is less than the predetermined significance level 

(α), indicating that the observed result would be highly unlikely under the null hypothesis. In this 

case, we set the statistical significance level (α) to be 0.05. It means that there is a statistically 

significant difference if P-value < 0.05. From the experimental result, P-value is 0.0001, this is 

lower than the significance level α=0.05, thus one should reject the null hypothesis, and it means 

that there is a statistically significant difference. Consequently, one may proceed with a Nemenyi 

post hoc test to detect which particular classifiers differ significantly. 

 

Nemenyi post hoc test calculates all pairwise comparisons between different classifiers and 

checks which models’ performance differences exceed the critical difference. The results of the 

pairwise comparisons are shown in Table 5, which critical difference (CD) value is 4.5154. 
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Table 5. Pairwise Comparisons of Nemenyi Post Hoc Test 

 

 

 
 

 

 

P-value results of Nemenyi post hoc test are shown in Table 6. P-value < 0.05 results are highlighted with 

boldfaced print, which mean that there is a statistically significant difference between two classifiers, in a 

column and a row 
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Fig.2. AUC Mean (M) Comparison of 10 Classification Models on 9 Datasets 

 
 

 shown in Table 6, LR outperforms other models in most datasets. In terms of R value (Table 

4) and AUC mean (M) (Figure 2), LR also has the highest value, followed by BP, NB and SVM 

in the second, third and fourth rank. Based on P-value results (Table 6), actually there is no 

significant difference between LR, NB, BP, and SVM models. This result confirmed Hall et al. 

[5] result that NB and LR, in particular, seem to be the techniques used in models that are 

performing relatively well in software defect prediction. SVM actually has excellent 

generalization ability in the situation of small sample data like NASA MDP dataset, but in this 

experiment SVM perform less well, as they require parameter optimization for best performance. 

 

On the other hand, models based on decision tree approach (C4.5, CART and RF) seem to 

underperform. From P-value analysis, there is a significant difference between LR and the all 

decision tree based models. This is may be due to the imbalanced class distribution problem on 

software defect datasets. As we know decision tree learners create biased trees if some classes 

dominate. LDA and k-NN models also performing badly and to be failure in the most datasets. 

Significant difference table resulted by Nemenyi post hoc test is shown in Table 7. 
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Table 7. Significant Differences of Nemenyi Post Hoc Test 
 

4. CONCLUSION  
A comparison framework is proposed for comparing the performance of classification 

algorithms in the software defect prediction. The framework is comprised of 9 NASA MDP 

datasets, 10 classification algorithms, 10 fold cross validation model, and AUC accuracy 

indicator. Friedman and Nemenyi are used to test the significance of AUC differences between 

models. The experimental results show that the LR perform best in most NASA MDP datasets. 

NB, NN, SVM and k* also perform well, and actually there is no statistically significant different 

between them. Decision tree based classifiers tend to underperform, as well as LDA and k-NN. 
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