

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Comparison of Classification Mining models for Software

Defect Prediction

K.B.S. Sastry1 , Dr. R. Satya Prasad2,

1Lecturer , Dept. of Computer Science, Andhra Loyola College,Vijayawada, sastrykbs@gmail.com

2 Associate Professor, Dept. of Computer Science, Acharya Nagarjuna University,Guntur,profrsp@gmail.com

Software defects are expensive in quality and cost. The accurate prediction of defect-prone software modules can

help direct test effort, reduce costs, and improve the quality of software. Machine learning classification algorithms

is a popular approach for predicting software defect. Various types of classification algorithms have been applied for

software defect prediction. However, no clear consensus on which algorithm perform best when individual studies

are looked at separately. In this research, a comparison framework is proposed, which aims to benchmark the

performance of a wide range of classification models within the field of software defect prediction. For the purpose

of this study, 10 classifiers are selected and applied to build classification models and test their performance in 9

NASA MDP datasets. Area under curve (AUC) is employed as an accuracy indicator in our framework to evaluate

the performance of classifiers. Friedman and Nemenyi post hoc tests are used to test for significance of AUC

differences between classifiers. The results show that the logistic regression perform best in most NASA MDP

datasets. Naïve bayes, neural network, support vector machine and k* classifiers also perform well. Decision tree

based classifiers tend to underperform, as well as linear discriminant analysis and k-nearest neighbor.

Keywords: Software Defect Prediction, Machine Learning, Classification Model, Comparison Framework

1. INTRODUCTION

A software defect is an error, failure, or fault in a software [1], that produces an incorrect

or unexpected result, or causes it to behave in unintended ways. It is a deficiency in a

software product that causes it to perform unexpectedly [2]. Software defects or software

faults are expensive in quality and cost. Moreover, the cost of capturing and correcting

defects is one of the most expensive software development activities [3]. Recent studies

show that the probability of detection through defect prediction models may be higher

than the probability of detection through software reviews [4]. The accurate prediction of

defect‐prone software modules can certainly assist testing effort, reduce costs and

improve the quality of software [5].

mailto:sastrykbs@gmail.com

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Classification algorithm is a popular machine learning approach for software defect

prediction. It categorizes the software code attributes into defective or not defective,

which is collected from previous development projects. Classification algorithm is also

able to predict which components are more likely to be defect-prone, supports better

targeted testing resources and therefore, improved efficiency. For prediction modeling,

software metrics are used as independent variables and fault data is used as the dependent

variable [6]. A wide range of classification techniques have already been proposed in the

predicting software defect. Since 1990, more than 20 classification algorithms have been

applied and proposed as the best method for predicting the software defect, including

logistic regression (LR) [7], decision trees (DT) [8], neural network (NN) [9], naive bayes

(NB) [10], and etc.

While many studies individually report the comparative performance of the modelling

techniques they have used, no clear consensus on which perform best emerges when

individual studies are looked at separately. Bibi et al. [11] report that regression via

classification (RvC) works well. Hall et al. [5] suggests that studies using support vector

machine (SVM) techniques perform less well. These may be underperforming as they

require parameter optimization for best performance. Models based on C4.5 seem to

underperform if they use imbalanced data [12] [13], as the algorithm seems to be sensitive

to this. NB and LR, in particular, seem to be the techniques used in models that are

performing relatively well overall [10] [14]. NB is a well understood algorithm that is in

common use. Studies using random forests (RF) have not performed as well as might be

expected [5], although many studies using NASA dataset use RF and report good

performances [15]. However, models seem to have performed best where the right

technique has been selected for the right set of data. No particular classifiers that performs

the best for all the datasets [14].

However, we need to develop more reliable research procedures before we can have

confidence in the conclusion of comparative studies of software prediction models [15]

[14] [4]. In this research, we propose a comparison framework, which aims to benchmark

the performance of a wide range of classification models within the field of software

defect prediction.

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

This paper is organized as follows. In section 2, the proposed comparison framework is

explained. The experimental results of classification models comparison are presented in

section 3. Finally, our work of this paper is summarized in the last section.

2. PROPOSED COMPARISON FRAMEWORK

The proposed framework is shown in Figure 1. The framework is comprised of 1) a

dataset 2) a classification algorithms, 3) a model validation, 4) a model evaluation and 5)

a model comparison.

2.1 Dataset

One of the most important problems for software fault prediction studies is the usage of

nonpublic (private) datasets. Several companies developed fault prediction models using

proprietary data and presented these models in conferences. However, it is not possible to

compare results of such studies with results of our own models because their datasets

cannot be reached. The use of public datasets makes our research repeatable, refutable,

and verifiable [16]. Recently, state-of-the-art public datasets used for software defect

prediction research is available in NASA Metrics Data (MDP) repository [17].

The data used in the proposed framework are collected from the NASA MDP repository.

NASA MDP repository is a database that stores problem, product, and metrics data [17].

Each NASA dataset is comprised of several software modules, together with their number

of faults and characteristic code attributes. After preprocessing, modules that contain one

or more errors were labeled as fault-prone, whereas error-free modules were categorized

as not-fault-prone. Besides line of codes (LOC) counts, the NASA MDP datasets include

several Halstead attributes [18] as well as McCabe complexity measures [19]. The former

estimates reading complexity by counting operators and operands in a module, whereas

the latter is derived from a module’s flow graph. Some researchers endorse the static code

attributes defined by McCabe and Halstead as defect predictors in the software defect

prediction. McCabe and Halstead are module-based metrics, where a module is the

smallest unit of functionality. Static code attributes are used as defect predictors, since

they are useful, generalizable, easy to use, and widely used

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Fig. 1. Proposed Comparison Framework of Classification Models for Software Defect Prediction

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

In this research, we use nine software defect datasets from NASA MDP. Individual

attributes per dataset, together with some general statistics and descriptions, are given in

Table 1. These datasets have various scales of LOC, various software modules coded by

several different programming languages including C, C++ and Java, and various types of

code metrics including code size, Halstead’s complexity and McCabe’s cyclomatic

complexity.

Table 1. Characteristics of NASA MDP Datasets

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

2.2 Classification Algorithms

The proposed classification framework aims to compare the performance of a wide range of

classification models within the field of software defect prediction. For the purpose of this study,

10 classifiers have been selected, which may be grouped into the categories of traditional

statistical classifiers (LR, LDA, and NB), nearest neighbors (k-NN and K*), NN, SVM, and

decision tree (C4.5, CART, and RF). The selection aims at achieving a balance between

established classification algorithms used in software defect prediction.

2.3 Model Validation

We use a stratified 10-fold cross-validation for learning and testing data. This means that we

divide the training data into 10 equal parts and then perform the learning process 10 times. As

shown in Table 2, each time, we chose another part of dataset for testing and used the remaining

nine parts for learning. After, we calculated the average values and the deviation values from the

ten different

testing results. We employ the stratified 10-fold cross validation, because this method has

become the standard and state-of-the-art validation method in practical terms. Some tests have

also shown that the use of stratification improves results slightly [20].

Table 2. Stratified 10 Fold Cross Validation

2.4 Model Evaluation
We apply area under curve (AUC) as an accuracy indicator in our experiments to evaluate the

performance of classifiers. AUC is area under ROC curve. Lessmann et al. [15] advocated the

use of the AUC to improve cross-study comparability. The AUC has the potential to significantly

improve convergence across empirical experiments in software defect prediction, because it

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

separates predictive performance from operating conditions, and represents a general measure of

predictiveness. Furthermore, the AUC has a clear statistical interpretation. It measures the

probability that a classifier ranks a randomly chosen fault-prone module higher than a randomly

chosen non-fault-prone module. Consequently, any classifier achieving AUC well above 0.6 is

demonstrably effective for identifying fault-prone modules and gives valuable advice as to which

modules should receive particular attention in software testing.

A rough guide for classifying the accuracy of a diagnostic test using AUC is the traditional

system, presented by Gorunescu [21]. In the proposed framework, we added the symbols for

easier interpretation and understanding of AUC (Table 3).

Table 3. AUC value, Its Meaning and Symbols

2.5 Model Comparison

There are three families of statistical tests that can be used for comparing two or more

classifiers over multiple datasets: parametric tests (the paired t-test and ANOVA), non-

parametric tests (the Wilcoxon and the Friedman test) and the non-parametric test that assumes

no commensurability of the results (sign test). Demsar recommends the Friedman test for

classifier comparisons, which relies on less restrictive assumptions [22]. Based on this

recommendation, in our framework Friedman test is employed to compare the AUCs of the

different classifiers. The Friedman test is based on the average ranked (R) performances of the

classification algorithms on each dataset.

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Let ri
j rank of the j-th of algorithms on the i-th of D datasets The Friedman test compares the

average rank of algorithm as

Under the null-hypothesis, which states that all the algorithms are equivalent and so their ranks Rj

should be equal. The Friedman statistic is calculated as follows, and distributed according to XF
2 with c-1 degrees

of freedom, which D and C are big enough.

If the null-Hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test is used when

all classifiers are compared to each other. The performance of two classifiers is significantly different if

the corresponding average ranks differ by at least the critical difference, given by

With critical values qα

3. EXPERIMENTAL RESULTS
The experiments were conducted using a computing platform based on Intel Core i7 2.2 GHz

CPU, 16 GB RAM, and Microsoft Windows 7 Professional 64-bit with SP1 operating system.

The development environment is Netbeans 7 IDE, Java programming language, and RapidMiner

5.2 library. We used the default parameter settings provide my RapidMiner 5.2 library.

We conducted experiments on 9 NASA MDP datasets by using 10 classification algorithms.

Table 4 reports the AUCs of all classification algorithms. The last column of Table 4 reports the

mean rank of each classifier over all datasets, which constitutes the basis of the Friedman test.

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Table 4. AUC of 10 Classification Models on 9 Datasets

The best classification model on each dataset is highlighted with boldfaced print. Table 4

shows that LR algorithm has the highest Friedman score (R). In statistical

significance testing the P-value is the probability of obtaining a test statistic at least as extreme

as the one that was actually observed, assuming that the null hypothesis is true. One often

"rejects the null hypothesis" when the P-value is less than the predetermined significance level

(α), indicating that the observed result would be highly unlikely under the null hypothesis. In this

case, we set the statistical significance level (α) to be 0.05. It means that there is a statistically

significant difference if P-value < 0.05. From the experimental result, P-value is 0.0001, this is

lower than the significance level α=0.05, thus one should reject the null hypothesis, and it means

that there is a statistically significant difference. Consequently, one may proceed with a Nemenyi

post hoc test to detect which particular classifiers differ significantly.

Nemenyi post hoc test calculates all pairwise comparisons between different classifiers and

checks which models’ performance differences exceed the critical difference. The results of the

pairwise comparisons are shown in Table 5, which critical difference (CD) value is 4.5154.

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Table 5. Pairwise Comparisons of Nemenyi Post Hoc Test

P-value results of Nemenyi post hoc test are shown in Table 6. P-value < 0.05 results are highlighted with

boldfaced print, which mean that there is a statistically significant difference between two classifiers, in a

column and a row

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Fig.2. AUC Mean (M) Comparison of 10 Classification Models on 9 Datasets

 shown in Table 6, LR outperforms other models in most datasets. In terms of R value (Table

4) and AUC mean (M) (Figure 2), LR also has the highest value, followed by BP, NB and SVM

in the second, third and fourth rank. Based on P-value results (Table 6), actually there is no

significant difference between LR, NB, BP, and SVM models. This result confirmed Hall et al.

[5] result that NB and LR, in particular, seem to be the techniques used in models that are

performing relatively well in software defect prediction. SVM actually has excellent

generalization ability in the situation of small sample data like NASA MDP dataset, but in this

experiment SVM perform less well, as they require parameter optimization for best performance.

On the other hand, models based on decision tree approach (C4.5, CART and RF) seem to

underperform. From P-value analysis, there is a significant difference between LR and the all

decision tree based models. This is may be due to the imbalanced class distribution problem on

software defect datasets. As we know decision tree learners create biased trees if some classes

dominate. LDA and k-NN models also performing badly and to be failure in the most datasets.

Significant difference table resulted by Nemenyi post hoc test is shown in Table 7.

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

Table 7. Significant Differences of Nemenyi Post Hoc Test

4. CONCLUSION
A comparison framework is proposed for comparing the performance of classification

algorithms in the software defect prediction. The framework is comprised of 9 NASA MDP

datasets, 10 classification algorithms, 10 fold cross validation model, and AUC accuracy

indicator. Friedman and Nemenyi are used to test the significance of AUC differences between

models. The experimental results show that the LR perform best in most NASA MDP datasets.

NB, NN, SVM and k* also perform well, and actually there is no statistically significant different

between them. Decision tree based classifiers tend to underperform, as well as LDA and k-NN.

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

REFERENCES

[1] K. Naik and P. Tripathy, Software Testing and Quality Assurance. John Wiley & Sons, Inc.,

2008.
[2] M. McDonald, R. Musson, and R. Smith, “The practical guide to defect prevention,”

Control, pp. 260–272, 2007.
[3] C. Jones, Applied Software Measurement: Global Analysis of Productivity and Quality, vol.

38, no. 1. McGraw-Hill Inc., 2008,
p. 662.

[4] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A.
Bener, “Defect prediction from static code features: current results, limitations, new
approaches,” Autom. Softw. Eng., vol. 17, no. 4, pp. 375–407, May 2010.

[5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A

Systematic Literature Review on Fault Prediction Performance in

Software Engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6,

pp. 1276–1304, Nov. 2012.
[6] C. Catal, “Software fault prediction: A literature review and current trends,” Expert Syst.

Appl., vol. 38, no. 4, pp. 4626–4636, Apr. 2011.
[7] G. Denaro, “Estimating software fault-proneness for tuning testing activities,” in

Proceedings of the 22nd International Conference on Software engineering - ICSE ’00,
2000, pp. 704– 706.

[8] T. M. Khoshgoftaar, N. Seliya, and K. Gao, “Assessment of a New

Three-Group Software Quality Classification Technique: An
Empirical Case Study,” Empir. Softw. Eng., vol. 10, no. 2, pp. 183–218, Apr. 2005.

[9] J. Zheng, “Cost-sensitive boosting neural networks for software defect prediction,” Expert
Syst. Appl., vol. 37, no. 6, pp. 4537– 4543, Jun. 2010.

[10] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code Attributes to Learn
Defect Predictors,” IEEE Trans. Softw. Eng., vol. 33, no. 1, pp. 2–13, Jan. 2007.

[11] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas, “Regression via Classification applied
on software defect estimation,” Expert Syst. Appl., vol. 34, no. 3, pp. 2091–2101, Apr. 2008.

[12] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data Mining
Techniques for Building Fault-proneness Models in Telecom Java
Software,” Proc. 18th IEEE Int. Symp. Softw. Reliab., pp. 215– 224, 2007.

[13] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models,” J. Syst. Softw., vol.
83, no. 1, pp. 2–17, Jan. 2010.

[14] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A General Software Defect-Proneness
Prediction Framework,” IEEE Trans. Softw. Eng., vol. 37, no. 3, pp. 356–370, May 2011.

[15] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496, Jul.
2008.

16] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets, and feature

selection techniques on software fault prediction problem,” Inf. Sci. (Ny)., vol. 179, no. 8, pp.

1040–1058, Mar. 2009.

ISSN-4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING

VOL 2 ISSUE 4 APRIL 2015 Paper 14

[17] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Reflections on the NASA

MDP data sets,” IET Softw., vol. 6, no. 6, p. 549, 2012.

[18] M. H. Halstead, Elements of Software Science, vol. 7. Elsevier, 1977, p. 127.

[19] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., vol. SE-2, no. 4, pp.

308–320, 1976.

[20] I. H. Witten, E. Frank, and M. A. Hall, Data Mining Third Edition. Elsevier Inc., 2011.

[21] F. Gorunescu, Data Mining: Concepts, Models and Techniques, vol. 12. Springer-Verlag

Berlin Heidelberg, 2011.

[22] J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Mach. Learn.

Res., vol. 7, pp. 1–30, 2006.

