
 

 

Effective Bug Triage Using Cold-Start 

Recommendation System 
 

Rajusekhar Alle, Aditya Aranya, Abhishek Thakur, Mr. Anilkumar J Kadam 

 
#Department of Computer Engineering, Savitribai Phule Pune University 

AISSMS COE, Pune, India 

ajkadam@aissmscoe.com  

sekhar.alle@gmail.com  

Abshekt60@gmail.com  

adityaaranya6@gmail.com  

 

    ABSTRACT 

 

ARTICLE INFO 

Over  40-50% cost  is  spent  in dealing with software bugs in  Software  companies. An 

inevitable  step  of  fixing  bugs is bug triage, which aims to correctly assign a developer  

to a new bug. To decrease the time cost in manual  work, text  classification  techniques 

are applied to implement automatic bug triage. A system can be constructed which will 

address the  problem   of data reduction for bug triage, i.e., how to reduce the scale and 

improve  the  quality  of   bug  data. A  combination  of  instance  selection  and  feature 

selection  can be used simultaneously to reduce data scale on the bug dimension and the 

word  dimension. And this system will  solve the Cold-Start Problem encountered in the 

current  system  at  the  starting  phase when there is no trained dataset and this system 

will use designation-matching. 

Keywords—Instance Selection, Feature Selection, Naive Bayesian Classifier, Bug triage, 

Prediction for reduction orders. 

 

 

 

I. INTRODUCTION 

WHAT IS BUG TRIAGE? 

Bug Triage is the process of assigning bugs to developers as 

per the  history of the particular  developer. Mining software 

repositories   is  an   interdisciplinary  domain  , which  aims  

to  employ   data  mining  to  deal with software engineering 

problems [11].  In  modern software development ,software 

repositories are large-scale databases  for storing  the  output 

of  software  development ,  e.g. , source code, bugs, emails, 

and   specifications. Traditional   software   analysis   is   not 

completely suitable for the large-scale and  complex  data in 

software  repositories[12]. Data  mining  has  emerged   as  a 

promising  means   to  handle  software  data. By  leveraging 

data  mining  techniques, mining  software  repositories  can 

uncover interesting information in software repositories and 

solve real world software problems. A bug repository  plays 

an important role in managing software bugs. 

    Software bugs are inevitable and fixing bugs is expensive 

in  software  development. Large  software  projects  deploy 

bug repositories  to  support  information  collection  and  to 

assist  developers to handle bugs. In  a bug repository, a bug 

is  maintained  as  a bug  report,  which  records   the textual 

description of reproducing the bug and updates  according to 

the  status  of  bug  fixing[16]. A  bug repository  provides  a 

data  platform  to  support many types of tasks on bugs, e.g., 

fault  prediction, reopened  bug analysis. In  this paper,  bug 

reports in a bug repository are called bug data. In  traditional 

software development, new bugs are manually triaged by an  

expert  developer ,  i.e.,  a human  triager assigns bugs to the 

developers.  

Due   to   the  large number  of  daily  bugs  and  the lack  of 

expertise  of  all  the bugs, manual bug triage is expensive in 

time  cost  and low in accuracy. To avoid the expensive cost 

of   manual   bug   triage,  existing   work   has  proposed  an 

automatic    bug    triage    approach ,  which    applies    text 

classification  techniques   to   predict   developers   for  bug 

reports.  In  this   approach ,  a  bug  report  is  mapped  to  a 

document  and  a related developer is mapped to the label of 

the    document. Then ,  bug   triage   is   converted    into   a 

problem  of  text  classification  and  is automatically solved 

with   mature   text   classification   techniques , e.g. ,  Naive 

Bayes[13].Based on the results of text classification,  human 

triager  assigns  new bugs by incorporating his/her expertise. 

To improve the accuracy of text classification techniques for 

bug  triage, some further  techniques are investigated, e.g., a 

tossing    graph  approach [14] and  a collaborative   filtering 

approach [15].  

   However,  large-scale and  low-quality  bug  data  in   bug     

repositories  block  the  techniques  of  automatic bug triage. 

Since  software  bug data are a kind of free-form text data, it 

is necessary to generate well-processed bug data to facilitate 

the     application  .  So    the    sample   bug    report    given   

below   shows    an   example   of   a   bug   report.  The  bug 

report is mainly   divided into  summary  and  description. A  

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-3 | March-2016 | Paper-6 28 

mailto:mandaverashmi1994@gmail.com
mailto:mandaverashmi1994@gmail.com
mailto:shrinivasdube16@gmail.com
mailto:vaibhavchhajed67@gmail.com


 

 

developer   reads through the   description   and   undertakes   

that  particular   bug  and   changes  the  status  of   the  bug 

whether it is resolved, assigned or not assigned. 

 

 
              Fig 1. Example of a bug report. 

 

II. ARCHITECTURAL OVERVIEW 

 

 
 

Fig 2. Architecture 

 
An architectural overview is illustrated in Fig. 1,a tester 

adds a new bug to the system then the new bug is sent to the 

data reduction module where all the redundant words and 

duplicate records are eliminated. Here we use two data 

reduction techniques i.e., Feature Selection[17] and Instance 

Selection[9].After the bug is reduced by word and bug 

dimension then it is sent to the classifier where it is 

compared to the history of the developers. Then the matched 

developer is assigned to the bug. If there is no history or the 

trained dataset then the problem called Cold-Start problem 

can occur. So the system is designed in such a way that till 

every developer has no history we will use recommendation 

system using designation-match. So in the early stages we 

will use designation of the developers and assign the bugs as 

per their designations. And after the history for every 

developer is developed we will classify it using Naive 

Bayesian Classifier as usual. 

So the recommendation system we will use will be called 

as Cold-Start Recommender. Also we will use combination 

of Instance Selection and Feature Selection which is a good 

strategy for achieving good accuracy[18]. The order 

whether to use Instance Selection first and then Feature 

Selection or vice-versa can be selected using prediction for 

reduction orders so as per this we will test some trained 

examples and find out accuracy and use that algorithm. 

 

III. MODULES 

A. Tester Login Module 

 
In  this  module, we  take  username  and  password from 

tester  to  authenticate  login  to  application. 

 

B. Developer Login Module  

 

In  this  module, we  take  username and  password  from 

developer   and   authenticate   login   to  the  application. 

 

C. Bug Data Reduction Module  

    

This module has two sub models: 

 

 Instance Selection: 

    

   This  module is used to select the instances of 

bug  reports and eliminate all the duplicate bugs 

or  bug  reports. 

 

 Feature Selection: 

 

   This  module  is  used to eliminate stop words, 

noisy and redundant words from the bug reports. 

For  Ex: the, are, version  codes , etc.  These  all 

words  are  of  no  use as we are using plain text 

classification and they have no importance. 

 

D. Classifier Module 

  

   In this module we classify the incoming bug reports by 

comparing them to each of the developers history and as 

per the number of words matched we will assign a 

developer. 

   We will use Naive Bayesian Classifier to classify as 

our application is a text classification and Naive 

Bayesian Classifier works good for text. 

 

E. Adding Bugs 

    

   Tester  adds   new   bugs   to  the  system  through  this 

module. 

 

F. Cold-Start Recommender Module 

    

   In this module we check whether there is any history 

of the developers in the trained data set for incoming 

bugs and if history is not present we will use this module 

and assign bugs as per the designation. 

Bug 123-Tabs Reappearing After Closing             Summary 

Status: Resolved fixed       Reported: 2015-11-12 03:50 IST 

                                                               by Manish Paul 

                                           Modified: 2015-12-27 (History) 

                                           CC  List: 4 users (show) 

Product: Chrome 

Component: jst.ejb 

  Version: 10.5 

   Platform: Android 

Assigned To: Oliver Queen           Assigned-to Developer 

                                                                                

                                                                               Description 

Build ID: I20090611-1540 

 

Steps to solve problem: 

1.Go to setting and turn off tabs options  

2.Now tabs will not be displayed as different applications 

3.And this reappearing problem is due to some development 

going on this topic. 

4.So it will be done in new update and for now turn off tabs. 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-3 | March-2016 | Paper-6 29 



 

 

 

G. Prediction for Reduction Orders Module 

    

   This module includes selection of the order for 

reduction i.e., first Instance Selection then Feature 

Selection or vice-versa. So the system can be trained 

with some examples and check which yields good 

accuracy and choose that order. 

 

H. Admin Module  

    

   The role of the admin is to login to the server and 

maintain databases of bugs. The administrator will be 

able to see the no. of bugs assigned and also how many 

are not assigned and also he will be able to see the graph 

of the developers. 

 

I. Update Bug Status Module  

    

   This module includes all activities that take care of 

updating status of bug . 

 

IV. ALGORITHMS 

A. Data Reduction: 

 

    The system that will be constructed will use Instance 

and Feature Selection as data reduction algorithms. 

Combination of both these algorithms will be used as the 

combination of both these algorithms provides high 

accuracy rather than using them  as  separate  algorithms. 

   A  problem  for  reducing  the  bug data is to determine 

      order of applying instance selection and feature selection 

      which  is  denoted  as  the prediction of reduction orders.            

      In  this  section, we first  present  how  to apply instance         

      selection  and  feature  selection  to  bug  data , i.e. , data     

      reduction for bug triage. 

 

      

ALGORITHM: Data reduction based on FS->IS 
 

Input: training set T with n words and m bug reports, 

reduction order FS->IS, 
final number nF of words, 

final number  mI of bug reports. 

Output: reduced data set TFI for bug triage 

1) apply FS to n words of T and calculate objective values 

for all the words; 

2) select the top nF words of T and generate a training 

set TF;  

3) apply IS to mI bug reports of  TF; 

4) terminate IS when the number of bug reports is equal to 

   or less than mI and generate the final training set TFI. 

 

   The  same  can  be  used  for IS->FS vice-versa  just   have  

to   interchange   the   steps.  And    the    selection    of    the 

reduction  order  will  depend on the results they provide for 

some trained examples. 

   For  a  given  data   set  in  a  certain  application,  instance 

selection  is  to  obtain  a  subset  of  relevant  instances (i.e., 

bug  reports  in  bug  data)  while  feature  selection  aims  to 

obtain a subset of relevant features (i.e.,words  in bug  data). 

In  our  work, we  will employ the combination  of   instance 

selection and feature selection. To distinguish the   orders of 

applying  instance  selection  and  feature  selection, we give 

the    following   denotation.  Given   an   instance   selection         

algorithm   IS  and  a  feature selection algorithm FS, we use 

FS->IS to denote  the bug data reduction, which first applies 

FS  and  then  IS; on  the  other  hand,  IS->FS  denotes  first 

applying IS and then FS. 

 

B. Naive Bayesian Classifier: 

 

   Naive Bayesian Classifier is a group of many 

classification algorithms. The bug triaging problem is 

converted into a text classification problem and then the 

Naive Bayesian Classifier which is a binary text 

classifier is applied. Naive Bayes methods are a set of 

supervised learning algorithms based on applying Bayes 

theorem with the “naive” assumption of independence 

between every pair of features. Given a class 

variable y and a dependent feature vector through , 

Bayes’ theorem states the following relationship: 

 

Using the naive independence assumption that, 

 

for all , this relationship is simplified to 

 

Since  is constant given the input, we can 

use the following classification rule: 

 

and  we  can use  Maximum A  Posteriori (MAP) estimation 

to estimate  P(y) and  P(x|y); the former  is  then  the relative 

frequency  of class y in the training set.The  different  Naive 

Bayes  classifiers  differ  mainly  by  the  assumptions   they 

make  regarding  the  distribution of  P(x|y).In spite of   their 

apparently    over-simplified     assumptions,   Naive   Bayes 

classifiers  have   worked   quite   well  in  many   real-world 

situations ,  famously  document   classification   and   spam 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-3 | March-2016 | Paper-6 30 



 

 

filtering.  They  require  a  small  amount  of training data to 

estimate  the necessary parameters. (For  theoretical  reasons 

why  Naive Bayes works well, and on  which types of data it 

does,  see  the  references  below.) Naive Bayes learners and 

classifiers  can  be  extremely fast compared to more hard or 

sophisticated  methods.  

V. CONCLUSION 

Our application, Effective Bug Triage Using Cold-Start 

Recommendation system improves the accuracy of bug 

triage by combining both Instance and Feature Selection 

algorithm[18]. Also, as this is a recommendation system the 

current problem of Cold-Start can be solved. Thus, our 

application can be used for effective assigning of bugs in 

software companies. 

 

ACKNOWLEDGEMENT 

Apart from our own, the success of this paper depends 

largely on the encouragement and guidelines of many 

others. We are especially grateful to our guide Prof A.J. 

Kadam and Prof D. P. Gaikwad, Head of Computer 

Engineering Department, AISSMSCOE who has provided 

guidance, expertise and encouragement. We are thankful to 

the staff of Computer Engineering Department for their 

cooperation and support .We would like to put forward our 

heartfelt acknowledgement to all our classmates, friends and 

all those who have directly or indirectly provided their over 

whelming support during this project work and the 

development of this paper. 

 

REFERENCES  
[1] C. C. Aggarwal and P. Zhao,"Towards graphical models 

for text processing,"Published by Knowl. Inform. Syst., vol. 

36, no. 1, pp. 1- 21, 2013. 

[2]  P.  S.  Bishnu  and   V. Bhattacherjee , " Software  fault      

prediction   using   quad   tree   based   k-means   clustering 

algorithm, "IEEE  Trans.  Knowl.  Data Eng., vol. 24, no. 6, 

pp. 11461150, Jun. 2012. 

[3]  D. Matter, A. Kuhn, and  O. Nierstrasz," Assigning bug 

reports   using   a   vocabulary-based   expertise   model   of 

developers , "Published  by  Proc. 6th  Int.  Working    Conf. 

Mining  Softw.  Repositories , May  2009,  pp. 131140. 

[4]  E. Murphy-Hill  ,  T. Zimmermann  ,  C. Bird  ,  and  N. 

Nagappan,"The design of  bug fixes,"Published by Proc. Int. 

Conf. Softw. Eng., 2013, pp. 332341. 

[5]   A .  Lamkan  ,  S .  Demeyer   ,     E .Giger  ,   and     B. 

Goethals , " Predicting  the  severity  of  a  reported   bug , " 

Published by IEEE 978-1-4799-3083 8/14/31.00,2014. 

[6]  J. Anvik, L. Hiew, and G. C. Murphy,"Who should  fix 

this bug?," Published by Proc. 28th Int. Conf. Softw.  Eng., 

May 2006, pp 361370. 

[7]  Eclipse. (2014). [Online]. Available: http://eclipse.org/ 

[8] Bugzilla, (2014). [Online]. Avaialble: http://bugzilla.org/ 

[9]   D . R . Wilson  and  T .  R .  Martınez  ,  “    Reduction 

techniques  for  instance-based  learning algorithms,” Mach. 

Learn., vol. 38, pp. 257–286, 2000. 

[10]   C .  Sun  ,  D .  Lo ,  S . C .  Khoo ,    and     J .  Jiang , 

“ Towards more accurate retrieval of duplicate bug reports,” 

in Proc. 26th IEEE/ACM Int. Conf. Automated Softw. Eng., 

2011, pp. 253–262. 

[11]  A. E. Hassan, “ The  road  ahead  for  mining software 

repositories ,”   in  Proc.  Front.  Softw.  Maintenance,   Sep. 

2008, pp. 48–57. 

[12]  T. Xie,  S. Thummalapenta,  D. Lo,  and  C. Liu, “Data 

mining  for  software  engineering,” Comput., vol. 42, no. 8, 

pp. 55–62, Aug. 2009. 

[13]  D. Cubranic and  G. C. Murphy, “Automatic bug triage 

using  text  categorization,”  in  Proc. 16th  Int. Conf. Softw. 

Eng. Knowl. Eng., Jun. 2004, pp. 92–97. 

[14]  G. Jeong,  S. Kim,  and  T. Zimmermann , “ Improving 

bug  triage with tossing graphs,” in Proc. Joint Meeting 12th 

Eur. Softw. Eng. Conf. 17th  ACM SIGSOFT Symp. Found. 

Softw. Eng., Aug. 2009, pp. 111–120. 

[15]  J. W. Park,  M. W. Lee,  J. Kim, S. W. Hwang,  and  S. 

Kim,   “ Costriage: A  cost-aware  triage  algorithm  for  bug 

reporting  systems,”  in  Proc. 25th  Conf. Artif. Intell., Aug. 

2011, pp. 139–144. 

[16]  T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. 

Schroter, and  C. Weiss, “What  makes  a good bug report?” 

IEEE  Trans.  Softw. Eng., vol. 36, no. 5,  pp. 618–643, Oct. 

2010. 

[17]  M. Rogati   and   Y. Yang,  “ High-performing  feature 

selection  for  text  classification,”  in  Proc. 11th   Int. Conf. 

Inform. Knowl. Manag., Nov. 2002, pp. 659–661. 

[18]  Suvarna  Kale and  Ajay  Kumar Gupta, “A Technique 

to  Combine  Feature Selection  with  Instance Selection  for 

Effective Bug Triage. 

 

 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-3 | March-2016 | Paper-6 31 




