

Transaction Management in Homogenous Distributed

Real-Time Grid Database Systems

1
Surya Prakash Ratawa

2
Yashwant kumar singh

3
Ram Milan

M.B.M Engineering College, Dept of Comp Sc Dept of Comp Sc
Jodhpur,Rajasthan Birla Institute of Technology,mesra Dr. Hari Singh Gaur Univ, SagarM.P.

rajneeshraj2001@gmail.com yashwantmca@gmail.com

M.B.M.Engineering College,Jodhpur,Rajasthan

Abstract— Distributed processing systems incorporating fully replicated databases are inherently more reliable

than systems having partitioned and partially replicated databases. Since every site has a complete copy of the

database, greater system functional integrity is provided in the event of network partitions. A network partition

can occur when a break occurs in the communication medium isolating one or more processor sites. In addition to

the greater reliability, there is a reduction in the associated control required. There is no need for the complicated

mechanisms for maintaining owners (the primary data copy) and an acceptable number of subscriber copies

(secondary copies or replications) of each database partition. There is also an improvement in performance

obtainable from the use of local copies of data at each site. Faster access memory systems and higher speed

communications improve performance of both partially and fully replicated database systems. However, potential

improvements in performance can only be achieved by using update algorithms which require significantly less

inter-site communication. An example of a homogeneous distributed processing system architecture incorporating

a fully replicated database system. A homogenous distributed real time replicated database system is a network of

two or more DBMS that reside on one or more machines. A distributed system that connects two or more

databases are Homogenous Distributed Database Systems (HDDBS) create different problems when accessing

distributed and replicated databases. Particularly, access control and transaction management in HDDBS require

different mechanism to monitor data retrieval and update to databases. Current trends in multi-tier client/server

networks make DDBS an appropriated solution to provide access to and control over localized databases. This

paper highlights the basic concepts underlying distributed database system including transaction management in

in HDRTDBS.

Keywords— Database system, Real time system, replicated database system, Transaction management, two-phase

commit, homogenous distributed database system etc.

I. INTRODUCTION II. DISTRIBUTED DATABASE SYSTEMS (DDBS)

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 23

A real-time system is one that must process information

and produce a response within a specified time, else risk

severe consequences, including failure. That is, in a system

with a real-time constraint it is no good to have the correct

action or the correct answer after a certain deadline: it is

either by the deadline or it is useless. Database replication

based on group communication systems has been proposed

as an efficient and flexible solution for data replication.

Distributed data base system is a technique that is used to

solve a single problem in a heterogeneous computer

network system. A major issue in building a distributed

database system is the transactions atomicity. When a

transaction runs across into two sites, it may happen that

one site may commit and other one may fail due to an

inconsistent state of transaction. Two-phase commit

protocol is widely used to solve these problems. The

choice of commit protocol is an important design decision

for distributed database system. A commit protocol in a

distributed database transaction should uniformly commit

to ensure that all the participating sites agree to the final

outcome and the result may be either a commit or an abort

situation. Many real time database applications are

Distributed database systems (DDBS) are systems that

have their data distributed and replicated over several

locations; unlike the centralized data base system (CDBS),

where one copy of the data is stored. Data may be

replicated over a network using horizontal and vertical

fragmentation similar to projection and selection

operations in Structured Query Language (SQL). Both

types of database share the same problems of access

control and transaction management, such as user

concurrent access control and deadlock detection and

resolution. On the other hand however, DDBS must also

cope with different problems. Access control and

transaction management in DDBS require different rules to

monitor data retrieval and update to distributed and

replicated databases[2,7].Oracle, as a leading Database

Management Systems (DBMS) employs the two-phase

commit technique to maintain a consistent state for the

databases. The objective of this paper is to explain

transaction management in DDBMS and how to

implements this technique. To assist in understanding this

process, an example is given in the last section. It is hoped

that this understanding will encourage organizations to use

and academics to discuss DDBS and to successfully

database system implementation of the two-phase commit,
and, finally, an example on how the two phases commit
works.

A. Advantages of Distributed Database system(DDBS)

Since organizations tend to be geographically dispersed,

a DDBS fits the organizational structure better than

traditional centralized DBS. Improved Availability-A

failure does not make the entire system inoperable and

Improved Reliability-Data may be replicatedEach location

will have its local data as well as the ability to get needed

data from other locations via a communication network.

Moreover, the failure of one of the servers at one site

won‘t render the distributed database system

inaccessible.
The affected site will be the only one directly involved

with that failed server. In addition, if any data is

required from a site exhibiting a failure, such data may

be retrieved from other locations containing the

replicated data. The performance of the system will

improve, since several machines take care of

distributing the load of the CPU and the I/O. Also, the

expansion of the distributed system is relatively easy,

since adding a new location doesn‘t affect the existing

ones.

B. Disadvantages of Distributed DBS

On the other hand, DDBS has several disadvantages.

A distributed system usually exhibits more complexity

and cost more than a centralized one. Security-

network must be made secure Integrity Control More

Difficult This is true because the hardware and

software involved need to maintain a reliable and an

efficient system. All the replication and data retrieval

from all sites should be transparent to the user. The

cost of maintaining the system is considerable since

technicians and experts are required at every site.

Another main disadvantage of distributed database

systems is the issue of security. Handling security

across several locations is more complicated. In

addition, the communication between sites may be

tapped to.

C. Types of DDBMS

1) Homogeneous DDBMS

 All sites use same DBMS product (eg. Oracle)

 Fairly easy to design and manage.

2) Heterogeneous DDBMS

 Sites may run different DBMS products .
 Possibly different underlying data models .
 Occurs when sites have implemented their own

databases and integration is considered later.
 We won‘t consider heterogeneous DDBMSs

here.


D. Failures in Distributed DBS

Several types of failures may occur in distributed
database systems:

Transaction Failures: When a transaction fails, it

aborts. Thereby, the database must be restored to the

state it was in before the transaction started.
Transactions may fail for several reasons. Some

failures may be due to deadlock situations or
concurrency control algorithms.

Site Failures: Site failures are usually due to
software or hardware failures. These failures result in

the loss of the main memory contents. In distributed
database, site failures are of two types:

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 24

1. Total Failure where all the sites of a distributed
system fail,

2. Partial Failure where only some of the sites of a
distributed system fail.

Media Failures: Such failures refer to the failure of

secondary storage devices. The failure itself may be due to
head crashes, or controller failure. In these cases, the

media failures result in the inaccessibility of part or the

entire database stored on such secondary storage.
Communication Failures: Communication failures, as

the name implies, are failures in the communication

system between two or more sites. This will lead to

network partitioning where each site, or several sites

grouped together, operates independently. As such,

messages from one site won‘t reach the other sites and

will therefore be lost. The reliability protocols then utilize

a timeout mechanism in order to detect undelivered

messages. A message is undelivered if the sender doesn‘t

receive an acknowledgment. The failure of a

communication network to deliver messages is known as

performance failure.

III. FUNDAMENTALS OF TRANSACTION

MANAGEMENT

Transaction Management deals with the problems of
keeping the database in a consistent state even when
concurrent accesses and failures occur, [6].

A. What is a Transaction?

A transaction consists of a series of operations

performed on a database. The important issue in

transaction management is that if a database was in a

consistent state prior to the initiation of a transaction, then

the database should return to a consistent state after the

transaction is completed. This should be done irrespective

of the fact that transactions were successfully executed

simultaneously or there were failures during the

execution,[5.7].
A transaction is a sequence of operations that takes the
database from a consistent state to another consistent state.
It
represents a complete and correct computation. Two types
of
transactions are allowed in our environment: query

transactions and update transactions. Query transactions

consist only of read operations that access data objects and

return their values to the user. Thus, query transactions do

not modify the database state. Two transactions conflict if

the read-set of one transaction intersects with the write-set

of the other transaction. During the voting process ,Update

transactions consist of both read and write operations.

Transactions have their time-stamps constructed by adding

1 to the greater of either the current time or the highest

time-stamp of their base variables.Thus; a transaction is a

unit of consistency and reliability. The properties of

transactions will be discussed later in the properties section.

Each transaction has to terminate. The outcome of the

termination depends on the success or failure of the

transaction. When a transaction starts executing, it may

terminate with one of two possibilities:

1. The transaction aborts if a failure occurred
during its execution

2. The transaction commits if it was completed

successfully example of a transaction that aborts

during process 2 (P2). On the other hand, an example

of a transaction that commits, since all of its processes

are successfully completed [8.9].

B. Properties of Transactions

A Transaction has four properties that lead to the
consistency and reliability of a distributed data base.
These are Atomicity, Consistency, Isolation, and
Durability[6].

Atomicity. This refers to the fact that a transaction

is treated as a unit of operation. Consequently, it

dictates that either all the actions related to a

transaction are completed or none of them is carried

out. For example, in the case of a crash, the system

should complete the remainder of the transaction, or it

will undo all the actions pertaining to this transaction.

The recovery of the transaction is split into two types

corresponding to the two types of failures: the

transaction recovery, which is due to the system

terminating one of the transactions because of

deadlock handling; and the crash recovery, which is

done after a system crash or a hardware failure.
Consistency. Referring to its correctness, this

property deals with maintaining consistent data in a
database system. Consistency falls under the subject of

concurrency control.
For example, ―dirty data‖ is data that has been

modified by a transaction that has not yet committed.
Thus, the job of concurrency control is to be able to
disallow transactions from reading or updating ―dirty
data.‖

Isolation. According to this property, each

transaction should see a consistent database at all

times. Consequently, no other transaction can read or

modify data that is being modified by another

transaction. If this property is not maintained, one of

two things could happen to the data base.
a. Lost Updates: this occurs when another

transaction (T2) updates the same data being modified
by the first transaction (T1) in such a manner that T2

reads the value prior to the writing of T1 thus creating
the problem of loosing this update.

b. Cascading Aborts: this problem occurs when

the first transaction (T1) aborts, then the transactions
that had read or modified data that has been used by
T1 will also abort.

Durability. This property ensures that once a

transaction commits, its results are permanent and

cannot be erased from the database. This means that

whatever happens after the COMMIT of a transaction,

whether it is a system crash or aborts of other

transactions, the results already committed are not

modified or undone.

IV. TRANSACTION MANAGEMENT ON REPLICATED

DATA

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 25

IN THE DDBMS

The term replication refers to the operation of copying

and maintaining database objects in multiple databases

belonging to a distributed system. The terms distributed

database system and database replication are related, yet

distinct. In a pure (that is, not replicated) distributed

database, the system manages a single copy of all data and

supporting database objects. Typically, distributed

database applications use distributed transactions to access

both local and remote data and modify the global database

in real-time. While replication relies on distributed

database technology, database replication offers

applications benefits that are not possible within a pure

distributed database environment. Most commonly,

replication is used to improve local database performance

and protect the availability of applications because

alternate data access options exist.[13,14,16] For example,

an application may normally access a local database rather

than a remote server to minimize network traffic and

achieve maximum performance. Furthermore, the

application can continue to function if the local server

experiences a failure, but other servers with replicated data

remain accessible. A new component, which is a

replication manager module, has been recently added to

the system, in order to maintain replicated data. In

addition, the local client module was created to manage

the local transactions operating on replicated data

items[16,17]. The communication between these two

modules is achieved by mechanisms of active databases:

triggers, database procedures, database events and, via

tuple space. At the present stage of the researches there

have been two models of replicated data –

primary/secondary and identical copies
– implemented in the experimental system. In this method

has been implemented in which write operations are executed

on the primary copy and next, committed writes are collected

and sent to all other copies as independent transactions.

There have been two methods used in the second case,

ROWA (Read One Write All) – a read operation may be

executed on an arbitrary copy but a write operation has to be

executed on every copy. To achieve this aim the two–phase

commit protocol (2PC) [1] has been implemented in the

experimental distributed database management system.

Communication between a client and local servers goes

through TS. All modules of the application processor have

access to TS. The analysis of the 2PC protocol in the context

of the tools used, made. The basic structure of the DDBMS.

it possible to reduce the number of vote requesting messages

and the number of messages with the client decision to

commit or abort the transaction. Instead of sending messages

to each local server the client outputs to TS only one tuple

containing the decision. All participants read the tuple,

without removing it from TS.IND (Independent) – copies are

updated independently but the possibility of transaction

commitment is consulted with the replication manager

through tuple space. The replication manager queues all

transactions referring to the replicated data. A new

transaction at the given node may be committed if all the

transactions from the replication manager queue had been

realized prior to it. The analysis of replication manager work

has shown that this module could be the ―bottleneck‖ of

the whole system. As the result of this, the second

concept has been proposed, in which replication

manager has been removed and its queue was placed in

TS as a set of tuples . In connection with this, two terms

have been suggested global replicated data version –

being a number of transactions performed on these data

in the whole system , and local replicated data version –

being a number of transactions performed at the local

node. In the new concept the commitment of a

transaction realized by a local client is possible if the

global and given local version of replicated data are

equal. In the other case transactions making a

difference between versions must be done at first. An

access to these transactions goes through a FIFO

queue.
The placement of a new transaction in this queue

must be preceded by obtaining a tuple, containing a

global replicated data version. This mechanism

protects from concurrent changing of the contents of

the queue. A problem may occur if a process that has

got the global version goes down. To deal with it

transactions on TS have been used. They are designed

to provide reversibility for a group of crucial

operations in the event of some sort of problem before

they are all completed successfully. If there is a

problem anywhere along the line, then the Paradise

server restores a tuple space to the state it was in

before the transaction started; removed tuples will

reappear, and no added tuples will appear.

V. TWO-PHASE COMMIT PROTOCOL

The 2-phase commit (2PC) protocol is a distributed

algorithm to ensure the consistent termination of a

transaction in a distributed environment. Thus, via

2PC an unanimous decision is reached and enforced

among multiple participating servers whether to

commit or abort a given transaction, thereby

guaranteeing atomicity. The protocol proceeds in two

phases, namely the prepare and the commit phase,

which explains the protocol‘s name.
The protocol is executed by a coordinator process,

while the participating servers are called participants.

When the transaction‘s initiator issues a request to

commit the transaction, the coordinator starts the first

phase of the 2PC protocol by querying—via prepare

messages—all participants whether to abort or to

commit the transaction
The master initiates the first phase of the protocol

by sending PREPARE (to commit) messages in

parallel to all the cohorts. Each cohort that is ready to

commit first force-writes a prepare log record to its

local stable storage and then sends a YES vote to the

master. At this stage, the cohort has entered a

prepared state wherein it cannot unilaterally commit

or abort the transaction but has to wait for the final

decision from the master. On the other hand, each

cohort that decides to abort force-writes an abort log

record and sends a NO vote to the master. Since a NO

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 26

vote acts like a veto, the cohort is permitted to unilaterally

abort the transaction without waiting for a response from

the master.
After the master receives the votes from all the cohorts,

it initiates the second phase of the protocol. If all the votes

are YES, it moves to a committing state by force writing a

commit log record and sending COMMIT messages to all

the cohorts. Each cohort after receiving a COMMIT

message moves to the committing state, force-writes a

commit log record, and sends an ACK message to the

master. If the master receives even one NO vote, it moves

to the aborting state by force-writing an abort log record

and sends ABORT messages to those cohorts that are in

the prepared state. These cohorts, after receiving the

ABORT message, move to the aborting state, force write

an abort log record and send an ACK message to the

master.
Finally, the master, after receiving acknowledgements

from all the prepared cohorts, writes an end log record and

then ―forgets‖ the transaction. The 2PC may be carried out

with one of the following methods: Centralized 2PC,

Linear 2PC, and Distributed 2PC, [7,15].

C. The Centralized Two-Phase Commit Protocol

In the Centralized 2PC shown in Figure 3,

communication is done through the coordinator‘s process

only, and thus no communication between subordinates is

allowed. The coordinator is responsible for transmitting

the PREPARE message to the subordinates, and, when the

votes of all the subordinates are received and evaluated,

the coordinator decides on the course of action: either

abort or COMMIT. This method has two phases:
1. First Phase: In this phase, when a user wants to

COMMIT a transaction, the coordinator issues a

PREPARE message to all the subordinates, (Mohan et al.,

1986). When a subordinate receives the PREPARE

message, it writes a PREPARE log and, if that subordinate

is willing to COMMIT, sends a YES VOTE, and enters the

PREPARED state; or, it writes an abort record and, if that

subordinate is not willing to COMMIT, sends a NO VOTE.

A subordinate sending a NO VOTE doesn‘t need to enter a
PREPARED state since it knows that the coordinator will

issue an abort. In this case, the NO VOTE acts like a veto

in the sense that only one NO VOTE is needed to abort
the transaction. The following two rules apply to the

coordinator‘s decision, (Ozsu et al., 1991):
a. If even one participant votes to abort the transaction,

the coordinator has to reach a global abort decision.
b. If all the participants vote to COMMIT, the

coordinator has to reach a global COMMIT decision.
2. Second Phase: After the coordinator reaches a vote, it

has to relay that vote to the subordinates. If the decision is

COMMIT, then the coordinator moves into the committing

state and sends a COMMIT message to all the subordinates

informing them of the COMMIT. When the subordinates

receive the COMMIT message, they, in turn, move to the

committing state and send an acknowledge (ACK) message

to the coordinator. When the coordinator receives the ACK

messages, it ends the transaction. If, on the other hand, the

coordinator reaches an ABORT decision, it sends an

ABORT message to all the subordinates. Here, the

coordinator doesn‘t need to send an ABORT message to

the subordinate(s) that gave a NO VOTE.

D. The Linear Two-Phase Commit Protocol

In the linear 2PC, as depicted in Figure 4,

subordinates can communicate with each other. The

sites are labeled 1 to N, where the coordinator is

numbered as site 1. Accordingly, the propagation of

the PREPARE message is done serially. As such, the

time required to complete the transaction is longer

than centralized or distributed methods. Finally, node

N is the one that issues the Global COMMIT. The

two phases are discussed below:
First Phase: The coordinator sends a PREPARE

message to participant 2. If participant 2 is not willing

to COMMIT, then it sends a VOTE ABORT (VA) to

participant 3 and the transaction is aborted at this

point. If participant 2, on the other hand, is willing to

commit, it sends a VOTE COMMIT (VC) to

participant 3 and enters a READY state. In turn,

participant 3 sends its vote till node N is reached and

issues its vote.
Second Phase: Node N issues either a GLOBAL

ABORT (GA) or a GLOBAL COMMIT (GC) and
sends it
to node N-1. Subsequently, node N-1 will enter an

ABORT or COMMIT state. In turn, node N-1 will
send the GA or GC to node N-2, until the final vote to
commit or abort reaches the coordinator, node .

E. The Distributed Two-Phase Commit Protocol

In the distributed 2PC, all the nodes communicate

with each other. According to this protocol, as Figure

5 shows, the second phase is not needed as in other

2PC methods. Moreover, each node must have a list of

all the participating nodes in order to know that each

node has sent in its vote. The distributed 2PC starts

when the coordinator sends a PREPARE message to

all the participating nodes. When each participant gets

the PREPARE message, it sends its vote to all the

other participants. As such, each node maintains a

complete list of the participants in every transaction.

Each participant has to wait and receive the vote from

all other participants. When a node receives all the

votes from all the participants, it can decide directly

on COMMIT or abort. There is no need to start the

second phase, since the coordinator does not have to

consolidate all the votes in order to arrive at the final

decision.

VI. HOMOGENOUS DATABASE

MANAGEMENT

SYSTEM: THE TWO-PHASE COMMIT

A homogenous distributed database system is a

network of two or more homogenous Databases that

reside on one or more machines. A distributed system

that connects four databases. An application can

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 27

simultaneously access or modify the data in several

databases in a single distributed environment.

Fig.1.Homogenous Database Management System

For a client application, the location and platform of the

databases are transparent. You can also create synonyms

for remote objects in the distributed system so that users

can access them with the same syntax as local objects. For

example, if you are connected to database mfg but want to

access data on database headquarters, creating a synonym

on manufacturing for the remote dept table enables you to

issue this query[4] ,he homogenous database is a

distributed database management system, which employs

the two-phase commit to achieve and maintain data

reliability. The following sections explain homogenous‘s

two-phase implementation procedures.

F. The Branch Tree

In each transaction, Oracle constructs a branch tree for
the participating nodes. The session tree describes the
relations between the nodes participating in any given
transaction. Each node plays one or more of the following

roles[10]:
1. Client(C): A client is a node that references data from

another node.
2. Database Server(DS): A server is a node that is being

referenced by another node because it has needed data. A
database server is a server that supports a local database.

3. Global Coordinator(GC): The global coordinator is
the node that initiated the transaction, and thus, is the root
of the branch tree. The operations performed by the global

coordinator are as follows:
• In its role as a global coordinator and the root of the

branch tree, all the SQL statements, procedure calls, etc.,

are sent to the referenced nodes by the global coordinator.

Instructs all the nodes, except the COMMIT point site, to

PREPARE
• If all sites PREPARE successfully, then the global

coordinator instructs the COMMIT point site to initiate the
commit phase

• If one or more of the nodes send an abort message,
then the global coordinator instructs all nodes to perform a
rollback.

4.Local Coordinator: A local coordinator is a node that

must reference data on another node in order to complete
its part. The local coordinator carries out the following
functions (Oracle8):

• Receiving and relaying status information among

the local nodes
• Passing queries to those nodes
• Receiving queries from those nodes and passing

them on to other nodes
• Returning the results of the queries to the nodes

that initiated them.
5. Commit Point Site: Before a COMMIT point site

can be designated, the COMMIT point strength of

each node must be determined. The COMMIT point

strength of each node of the distributed database

system is defined when the initial connection is made

between the nodes. The COMMIT point site has to be

a reliable node because it has to take care of all the

messages. When the global coordinator initiates a

transaction, it checks the direct references to see which

one is going to act as a COMMIT point site. The

COMMIT point site cannot be a read-only site. If

multiple nodes have the same COMMIT point strength,

then the global coordinator selects one of them. In

case of a rollback, the PREPARE and COMMIT

phases are not needed and thus a COMMIT point site

is not selected. A transaction is considered to be

committed once the COMMIT point site commits

locally.

G. Two-Phase Commit and the Homogenous
Database Implementation

The transaction manager of the homogenous

Oracle8 database necessitates that the decision on

what to do with a transaction to be unanimous by all

nodes. This requires all concerned nodes to make one

of two decisions: commit and complete the transaction,

or abort and rollback the transaction. The Oracle

engine automatically takes care of the commit [18].
or rollback of all transactions, thus, maintaining the

integrity of the database. The following will describe
the two phases of the transaction manager.

1. PREPARE Phase (PP): The PP starts

when a node, the initiator, asks all participants, except

the commit point site, to PREPARE. In the PP, the

requested nodes have to record enough information to

enable them either to commit or abort the transaction.

The node, after replying to the requestor that it has

PREPARED, cannot unilaterally perform a COMMIT

or abort. Moreover, the data that is tied with the

COMMIT or abort is not available for other

transactions.
Each node may reply with one of three responses

to the initiator. These responses are defined below:
a. Prepared: the data has already been modified and

that the node is ready to COMMIT. All resources
affected by the transaction are locked.

b. Read-only: the data on the node has not been
modified. With this reply, the node does not
PREPARE and does not participate in the second
phase.

c. Abort: the data on the node could not be

modified and thus the node frees any locked resources

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 28

for this transaction and sends an abort message to the node

that referenced it.
2. COMMIT Phase (CP): Before the CP begins,

all the referenced nodes need to have successfully

PREPARED. The COMMIT phase begins by the global

coordinator sending a message to all the nodes instructing

them to COMMIT. Thus, the databases across all nodes

are consistent.

H. Failure of the Two-Phase Commit(2PC)

A major problem with the two-phase commit occurs

when one of the nodes participating in a distributed

transaction fails while the transaction is in the

PREPARED state. When the failure is for a prolonged

period of time, then the data locked on all the other nodes

won‘t be available for other transactions. This will cause a

lot of transactions to rollback due to deadlocks. Oracle

DBMS, in a new version, introduced an advanced queuing

technique to deal with the problem of deadlock. The

authors hope to address this technique in another paper in

the near future.

VII. AN EXAMPLE OF A DISTRIBUTED
DATABASE SYSTEM

Fig. 2 illustrates the steps homogenous distributed

database performs in order to PREPARE, Select the

COMMIT Point Site, and COMMIT. The example in the

figure depicts a company that has several branches located

in different cities numbered A to G. Each site has to have

access to most of the data in the company in order to check

on the status of purchase orders, material acquisition, and

several other issues. Since new projects are awarded and

older projects are completed, project sites tend to change

locations. Also, depending on the size and duration of a

project, different COMMIT point strength can be assigned

and thus, in the same area, different COMMIT point sites

can be chosen, for a given location, over a period of time.

In this example, City E is the head office and thus posses

the highest COMMIT point strength. The other sites are

assigned the COMMIT point strength based on the rupee

volume of the project. Higher monetary value for a project

requires more resource allocation, and as such, will lead to

more transactions executed against the data for that project.

Since the amount of data involved is large, each site will

have the portion of the database pertaining to its operations

replicated and stored on a local server. Any transaction

will at least affect the database at the head office and one

of the sites. If, for example, a material rate, description of

an item, accomplished progress, or purchase order is

entered, a transaction is initiated that will affect the

database at the head office and the database at the

concerned site.

Fig.2-Distributed Database System over several node

Additional modifications, such as those involving

employee transfer or equipment transfer from one site

to another, will affect two or more sites. The following

discussion explains the steps that entail in processing a

distributed transaction:
An employee is to be transferred from City F to

City B. The transaction is initiated by City E by a

personnel employee. The affected sites need to

participate in the transaction. The processes that

transfer one employee from one site to another should

be grouped under one transaction so that either all or

none of the processes are carried out. An explanation

of these steps follows:
1. Since City E is initiating the transaction, it

becomes the root of the session tree, i.e. the global

coordinator. Since City 1 updates data in City F and

City B, it becomes a client. Since City E updates data

on City G and City B, the two nodes become database

servers.
2. When the application issues the COMMIT

statement, the two-phase commit is started.
3. The global coordinator determines the

COMMIT point site.
4. The global coordinator issues the PREPARE

statement to all nodes except the COMMIT point site.

If any of the nodes cannot PREPARE, the transaction
is aborted; otherwise, a PREPARED message is sent

to the node that referenced it.
5. The global coordinator instructs the COMMIT

point site to COMMIT. The COMMIT point site
commits the transaction locally and records the
transaction in its local redo log.

6. The COMMIT point site informs the global
coordinator that it has committed and the global
coordinator informs the other nodes by sending the
COMMIT message.

7. When all the transactions have committed, the
global coordinator informs the COMMIT point site to
―forget‖ about the transaction. The COMMIT point

site, after
―forgetting‖ about the transaction, informs the global

coordinator, and the global coordinator, in turn,
―forgets‖ about the transaction.

VIII. CONCLUSIONS

Scheduled the present time Transaction

management is an fully grown thought in distributed

data base management systems (DDBMS) for research

area. Our Homogenous Distributed Database Systems

based replication proposal is able to inherit and

reduces the communication traffic the best

characteristics of the Database Systems. However,

Oracle was the first commercial DBMS to implement

a method of transaction management: the two-phase

commit. Though it was very difficult to obtain in order

on homogenous DBMS implementation of this method

were able to pull together sufficient in sequence to put

in writing homogenous transaction for the database

system. Many associations do not implement

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 29

distributed databases because of its difficulty. They simply

resort to centralized databases. However, with global

organizations and multi-tier network architectures,

distributed implementation becomes a necessity. It is

hoped that this paper to will assist organization in the

implementation of distributed databases when installing

homogenous DBMS, or give confidence organizations to

journey from centralized to distributed DBMS.

Organisations could also contribute to this process by

having graduates with the knowledge of homogeneous

DBMS capability. With DBMS making so much effort on

incorporating this and other advanced features in its

database software, academicians should also play a major

role in exposing beneficiary to these superior element

transaction management.

REFERENCES

[1] R. Abbott and H. Garcia-Molin a, ―Scheduling ‗Real-Time

Transactions: a Performance Evahration‖, F&c. of 14th
VLDB Conj., August 1988.

[2] M, Valduriez P,1991, Principles of Distributed Database

Systems, Prentice-Hall.P. Bernstein, V. Hadzilacos and N.
Goodman, .

[3] E. Cooper, ―Analysis of Distributed Commit Protocols‖,

Proc. of ACM Sigmod Conj., June 1982.
[4] Ghazi Alkhatib, Transaction Management in Distributed

Database: the Case of Oracle‘s Two-Phase Commit,
Vol. 13(2).

[5] Mohan,C.;Lindsay,B.;andObermarck,R.
[1986],―Transaction Management in the R* Distributed
Database Management System.‖ ACM Transactions on
Database Systems, Vol. 11, No. 4, December1986, 379-395.

[6] Ozsu, Tamer M., and Valduriez, Patrick [1991], Principles of
Distributed Database Systems,Prentice H.

[7] G. Coulouris, J. Dollimore, T. Kindberg: Disributed Systems,
Concepts and Design, Addison–Wesley, 1994.

[8] S. Ceri, M.A.W. Houtsma, A.M. Keller, P. Samarati: A
Classification of Update Methods for Replicated Databases,
via Internet, May 5, 1994.

[9] D. Agrawal, A.El. Abbadi: The Tree Quorum Protocol: An
Efficient Approach for Managing Replicated Data. in Proc.
of VLDB Conf. pp 243-254, 1990.

[10] Ramamritham,Son S. H, and DiPippo L,2004, Real-Time
Databases and Data Services, Real-Time Systems J., vol. 28,
179-216.

[11] Robert A and Garcia-Molina H,1992, Scheduling Real-Time
Transactions, ACM Trans. on Database Systems, 17(3).

[12] Jayant. H, Carey M, Livney,1992, ―Data Access Scheduling
in Firm Real time Database Systems‖, Real Time systems

Journal, 4 .
[13] Jayanta Singh and S.C Mehrotra et all, 2010,―Management

of missed transaction in a distributed system through
simulation‖, Proc. Of IEEE .

[14] Udai Shanker, ―Some Performance Issues In Distributed
Real Time Database System‖, PhD Thesis, December,2005 .

[15] Jayanta Singh and S.C Mehrotra, 2006,―Performance
analysis of Real Time Distributed Database System through
simulation‖ 15th IASTED International Conf. on APPLIED
SIMULATION & MODELLING, Greece.

[16] Jayanta Singh and S.C Mehrotra,2009 "A study on
transaction scheduling in a real-time distributed
system‖,EUROSIS‟s Annual Industrial Simulation
Conference, UK.

[17] Jayant H. 1991, ―Transaction Scheduling in Firm Real-Time

Database Systems‖, Ph.D. Thesis, Computer Science Dept.

Univ. of Wisconsin, Madison.
[18] Oracle8 Server Distributed Database Systems, Oracle, 3-1 –

3-35.

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-7 | July,2017 | Paper-4 30

