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Abstract 

This paper studies wind-farm power output prediction 

based on recurrent neural network. First, a hybrid 

recurrent neural network (RNN) regularization method 

involving dropout and long short-term memory (LSTM) 

is presented. In this model, a regularization scheme is 

applied to modify and adapt the stochastic nature of the 

wind. Secondly, a new data structure is presented to the 

model. Thirdly, the method is developed for wind farm 

power output (WFPO) prediction. This algorithm is based 

on the dropout method, which has made WFPO capable 

of better prediction irrespective of the non-deterministic 

wind speed. The LSTM solves the RNN limitation of 

overfitting. The proposed method is demonstrated by 

investigating the WFPO on a fourteen wind-turbines, 

provides up to 80% accurate result over ARIMA model. 

Keywords: Wind-power Output Prediction, Recurrent 

Neural Network, LSTM, eLSTM, ARIMA, MSE. 

 

I Introduction. 

The intermittency of wind speed introduces challenges to wind 

power operation during energy integration. Wind-power 

reliability planning relies on fast and strong wind speed 

fluctuation and response to system dynamics for better wind 

power production. The global energy report [1] shows that 

power generation from the wind rose to 54.6 gigawatts (GW) 

of installed capacity across the globe. From the report, China 

and the USA are leading with installed capacity of about 23.4 

and 8.2 GW, respectively. Hence, countries like Germany and 

India are showing a strong appetite for wind energy generation 

[2]. However, wind is non-deterministic; thus, efficient and 

reliable wind prediction is required to learn wind variations for 

sustainable wind power generation. Wind data is stochastic and 

complex to predict using linear approaches. Forecasting 

horizons and methods correlates with accuracy. These horizons 

are short-term, ultra-short-term, medium and long term as 

discussed extensively by [3].  Real power balance from the 

wind are classified into four major categories for wind speed 

prediction. These categories supplement the forecasting 

horizons accuracy. They are the persistent models [4], Physical 

methods using numerical weather prediction (NWP) [5], 

statistical methods, using ARIMA and Bayesian approaches [6, 

7] and the artificial intelligence (AI) method. The AI method 

includes artificial neural networks (ANN) [8-12], support 

vector regressions (SVR) [10, 13] and recurrent neural 

networks (RNN) [14-17]. The RNN properties has proven to 

be among the most efficient procedures [17, 18]. One of the 

challenges is the vanishing gradient problem on sequence 

growths. This is because RNNs’ properties involve mapping 

between the input and output sequences for learning purposes. 

To address this, researchers came up with many variants [19, 

20], one of which introduces the concept of the cell state to 

control these growths; this is called long short-term memory 

(LSTM). Although LSTM controls these growths by mitigating 

vanishing gradients, LSTM suffers from overfitting or perfect 

learning due to the nature of time series data; hence, it requires 

further regularisation.  

Regularisation is a method of controlling model complexities 

and numerical stability in neural network (NN) systems [21]. 

To obtain regularisation in a neural network, an additive 

penalty term is introduced into the cost function; in the form of 

dropout, and L1L2 to favour simpler models over complex 

ones [3]. From the literature, the L1 sums the weight 

coefficients while L2 sums the squared weight coefficients 

[22]. The dropout method on the other hand prevents co-

adaptation on training data and is an efficient method of model 

averaging in NN, hence, it reduces overfitting of RNNs [23]. 

The structural implementation in LSTM threatens memory 

ability in time series prediction, which in turn, results in poor 

performance. Reference [24] described dropout applied during 

the prediction of protein structure confirming that [24, 25] 

experienced smooth training and better prediction due to model 

averaging implementations. This research is therefore inspired 

by [12, 23, 26, 27] where the idea of sequential modelling is 

introduced for time series sequence applying dropout on LSTM 

to forecast sequence generation for speech, handwriting 

recognition, and machine translation. In addition, the paper is 

leveraging on the concept of applied LSTM sequence 

representation [22] seen in image label annotation. Also, the 

investigation of the prediction of energy consumption and wind 

power for households using LSTM [21] and effective learning 

of measured energy consumption profile. In view of the above, 

the main contributions of the research are as follows: 

 Improvement on RNN by synchronising long short-term 

memory (LSTM) and the dropout regularization 

methods to obtain significantly better results when 

compared to other models. 

 Inspection of the dropout prediction from a sequence 

modelling perspective and implementation of temporal 

models to solve wind speed time series prediction 

problems. 

 Modelling of a typical wind farm for power output 

prediction. 

 

To the best of our knowledge, the research work makes the 

first attempt on both wind-farm power output prediction using 

a combination of LSTM and dropout methods for prediction.  

The rest of the paper is organised as follows; in section II, wind 

power distributions and the data used in the research is 

discussed. The derived wind power data and analysis as related 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5  | Issue-11 | November, 2019 10

mailto:e.eze@sussex.ac.uk


 

to the research is as presented and described in Section III. 

Section IV presents data preparation and model configuration. 

The research experimentation is presented in section V. The 

results evaluation and presentation is as discussed in section VI 

while the paper conclusion is presented in section VII.  

II. Field Data Description 

The  data   is extracted from the PHM society web portal used 

for the  data challenge in 2011 by [28]. Feature extraction, de-

noising and filtering were  as described by [29]. Figure 1 

explores randomly selected data within the wind farm.  

Figure 1. Wind speed of Different Turbines. 

Visualisations at each of these wind turbines, shows 

wind speed plots share similar patterns, although data 

requires several verifications for predictability.  

A. Wind Power Modelling  

Wind power modelling over the years has relied on the 

traditional power curves. This curve models wind power as a 

function of wind speed at turbine hub height, hence, adjusted 

for air density. In the literature, the algorithm used for 

calculating the induction factors are the force 𝑑𝐹𝑁 and torque 

𝑑𝑄 of Eq. (1) and (2) respectively [30], which defines wind 

power as the conversion of atmospheric forecasts into power 

output from many turbines or a single turbine. 

𝑑𝐹𝑁 = 𝐵 ∗
1

2
∗ 𝜌𝑈𝑟𝑒𝑙

2 𝑐𝑑𝑟(𝐶𝑙𝑐𝑜𝑠𝜃 +  𝐶𝑑𝑠𝑖𝑛𝜃)       (1)             

𝑑𝑄 =  𝐵 ∗
1

2
∗ 𝜌𝑈𝑟𝑒𝑙

2 𝑐𝑟𝑑𝑟(𝐶𝑙𝑐𝑜𝑠𝜃 −  𝐶𝑑𝑠𝑖𝑛𝜃)   (2) 

From the equation, 𝑈 is the relative wind speed and its angle 𝜃 

as it approaches the blade. Once torque is computed, the 

power generation from the wind is the torque multiplied by 

angular velocity. The rotor disk generates power by the 

summation of each wind on the blades.  

Furthermore, to obtain the characteristics of wind in a wind 

farm, wind speed data collected at the farm is used. Secondly 

using statistical estimation – predefined probability 

distributions. In the previous, anemometer can be used to 

collect wind speed as in Figure 1, which depicts the variation 

of wind speed as a function of time. The wind speed is 

subdivided into bins such that the data point that falls within 

each bin is counted to form Figure 2, called the wind speed 

histogram (WSH). In the histogram, each data point is 

associated with an average wind speed within certain time 

interval to obtain the total amount of time during which wind 

is blowing at a speed associated with the bin. Using this 

approach, the annual energy production, AEP is obtained as 

shown in Eq. (4). 

 

 

 

 

Figure 2: WSH of four Turbines in the Wind farm.  
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The second approach, which requires statistical methods, 

shows that the Weibull distribution can provide a good fit to 

the wind speed histogram. The probability density function 

(PDF) has two parameters that allow users to adjust the shape 

of wind power within the wind farm, see Eq. (3). From the 

equation, c is the scale factor while k is the shape factor. The 

shape factor controls the location and peak of the distribution 

while the width of the function is controlled by the scale factor 

c, often selected at average wind speed [31].  

𝑓(𝑡) =
𝑘

𝑐
(

𝑡

𝑐
)

𝑘−1

𝑒−(
𝑡

𝑐
)

𝑘

                      (3)                                

𝐴𝐸𝑃 =  ∑ {exp [−(
𝑈𝑖−1

𝑐
)𝑘] − exp [− (

𝑈𝑖

𝑐
)

𝑘

]}𝑁𝐵
𝑖=1 𝑃𝑤(

𝑈𝑖−1+𝑈𝑖

2
)           (4) 

Wind power density (WPD) is the indicator that shows wind 

resource capacity in a specific wind farm. It is calculated based 

on available power in the wind farm and the Weibull 

parameters method of Eq. (5) [47].  

𝑃

𝐴
=  ∫

1

2
𝜌𝑈3𝑓(𝑉)𝑑𝑉

∞

0
=  

1

2
𝜌𝑐3ɼ(

𝑘+3

𝑘
)                    (5)     

The average WPD in terms of wind speed is calculated using 

Eq. (6). This is because wind power is proportional to the cube 

of wind speed, hence, the root mean cube (rmc) of wind speed 

results in Eq. (7) 

 𝑊𝑃𝐷 =  
∑ 0.5𝜌𝑈𝑖

3𝑁
𝑖=1

𝑁
                                (6)                              

   

𝑈𝑟𝑚𝑐 = √
1

𝑁
∑ 𝑈𝑖

3𝑁
𝑖=1

3
                                  (7)

                         
N is 14, equivalent to the number of Turbines in the Wind 

Farm as shown in Figure 3. 

 

Figure 3: Weibull Distribution of the Wind farm. 

 

 

B. Wind Farm Power Output Modelling 

To demonstrate wind farm power output prediction from a 

wind farm, a 14-turbine wind farm is considered in this paper, 

adapted from the design of [32] although not considering the 

wake effect, however, other configurations are as described in 

[33]. From the windfarm layout, Eq. (8) models the wind-farm 

power output. 

𝑒𝑃𝛼,ƴ(ɸ, δ, 𝓛)[Kwh] = 
1

2
𝜌𝑉𝛼,ƴ(ɸ, δ, ℒ)3𝛽𝐶𝑝𝑁𝑚           (8) 

Where β is the swept rotor area (𝑚2), 𝐶𝑝 is the rotor 

coefficient of efficiency or capacity factor, which we assume 

to be 90%, 𝑁𝑚 is the efficiency for converting the rotor 

mechanical power into electricity; assumed to be 92%. 𝜌 is air 

density and 𝑉𝛼,ƴ is the wind velocity of the wind farm. 

III. Machine Learning Modelling. 

The wind data undergoes transformations using machine 

learning (ML) to fit to the model. The research employed these 

three basic steps to achieve this: 

 Transform the generated wind speed (WS) data to 

be stationary using the Dickey-Fuller test of figure 

4. Compute first level (d = 1) differencing using the 

difference between current series (𝛾𝑡) and previous 

series (𝛾𝑡−1) as in 𝛥𝛾𝑡 =  𝛾𝑡 −  𝛾𝑡−1.  

 Window model is used to transform the data into a 

supervised learning problem to have input/output 

patterns such that at prior steps, observations are 

used as input to predict observation at the current 

time step. 

 Normalise the data to have a specific scale between 

-1 and 1 

 These transformations are converted after the 

prediction to return them into their original scale 

before errors are calculated and scored. 

 

Figure 4: Stationary Test at D=1 

The insight gained in Figure 4 led to the data being split; 80% 

for training whilst 20%, was used for testing the regularised 

models. 

a. Recurrent Neural Network (RNN) Model 

This is a type of neural network, which perform the same task 

for every element of a sequence, with the output dependent on 

previous computations in a memory-like manner [12] as 
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shown in Figure 5. RNN models are unfolded into full network 

for training tasks to be applied in the network. 

 

   
Figure 5: Simple RNN Architecture. 

 

       During training, the sequence is back propagated such that 

the input xt at time step t is a vector corresponding to 𝑠𝑡 which 

is calculated based on previous hidden state by considering 

current state input steps of 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1). Here, 𝑠−1 is 

required to calculate the first hidden state that is set to zero. 

Therefore, the output 𝑜𝑡 at step t is set to 𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡). 

This process fails at long sequence of data and requires LSTM. 

b. Long Short Term Memory Model (LSTM). 

LSTM improves RNN by the concept of the cell state Ct The 

cell state keeps updating by having the input it and output, ot 

perform element-wise multiplication on the input and output 

of the cell as shown in Figure 6. The previous state of the cell 

is multiplied by the forget gate ft, which results in the control 

of exponential bursts, hence correcting vanishing gradients. 

Because time series requires single value prediction, the gate 

activation function  it, 𝜊𝑡, 𝑓𝑡  𝑢𝑠𝑒𝑠 sigmoid activation for 

output blocks. However, the rest of the mathematical 

configuration is as shown in Eq. (9). 

ft = σg(ϴxfxt + ϴℎfht−1 + bf)                                                        

it =  σg(ϴ𝑥ixt + ϴℎi + bi) 

οt = σg(ϴ𝑥οxt + ϴℎοht−1 + bο) 

𝑔𝑡 = 𝑇𝑎𝑛ℎ (ϴxgxt + ϴhght−1 + bg) 

ct = ft ʘ ct−1 +  it ʘ gt 

ht =  οt ʘ Tanh (ct)                                    (9) 

                                                                                                
 

  

 

 

 

 

 

Figure 6: LSTM Architectural design 

Hence, LSTM has seen implementation in [19, 34]. Figure 6 

depicts the LSTM architecture with a single node cell 

implementation. LSTM struggles with time series kind of 

problems since the generalisation often results to overfitting. 

Therefore, adoption of further regularisation using dropout 

method is required. 

c. Dropout Model.  

This is a method proposed by [35] for correcting weight values 

due to over-adaptation, which in turn causes diminishing 

accuracy on new samples while training RNN, described [36-

38]. This is achieved  [39] using the Bernoulli random variable 

generator 𝛿𝑖 to remove neuron at random from a neural  

network as described by Eq. (10) 

𝐸[𝑦(𝑖)] =  ∑ 𝑤𝑘ʘ𝑥𝑘
(𝑖)

𝐸[𝑛
𝑘=1 𝛿𝑘] < 𝑏𝐸[𝛿𝑘] 

               =  ∑ 𝑤𝑘ʘ𝑥𝑘
(𝑖)

𝑝𝑘 < 𝑏𝑝𝑏
𝑛
𝑘=1                        (10) 

Where 𝑤𝑘 is the weight-vector and 𝑥𝑘
(𝑖)

 is the neural 
shape parameter. At independent identical distribution 
of the 𝛿𝑖, the q becomes the random number generator 
that ensures the shape of the network is kept at every 
iteration while p is the probability of keeping a neuron 
at random. Therefore, during training Eq. 11 is applied 
to train individual nodes of a RNN  

𝐸[𝑦(𝑖)] =
1

𝑞
 . [∑ 𝑤𝑘ʘ𝑥𝑘

(𝑖)
𝑞 + 𝑏𝑛

𝑘=1 ]                         (11) 

 
Eq. (11) is the inverted dropout representation. During 

backpropagation, 𝑝 is element-wise multiplied ʘ by the 

weight parameters 𝑤𝑘  of the reduced nodes to present a zero-

out neurons in the hidden layer by reducing co-adaptation 

among the neurons, this scenario results in an LSTM network 

that is insensitive to specific neuron weights, thereby 

influencing better generalisation with relatively less 

likelihood for overfitting training data. 

 

d. ARIMA Model Configuration. 

Machine learning (ML) models like RNN, can be applied 

directly to the raw data [36, 41, 42]. ARIMA (P, D, Q) models are 

state space models, which require model improvement due to 

outliers inherited from the data. The p and q parameters were 

as modelled in [43, 44]. The p, d, q parameters are obtained 

using a grid search machine learning method. The grid search 

technique is tuneable to RMSE statistical quantity for best 

estimation. In this paper, about 0.82% of evaluated RMSE 

errors were reported meaning that the search has the best (p, 

d, q) components at (0.4, 1, 2) respectively.  

e. The Proposed Machine Learning Model for 

wind speed prediction. 

The combination of LSTM and Dropout in this paper is 

eLSTM. Here, the set of inputs are multiplied by a set of a 

probable-weights (𝑤𝛳𝑖) of Eq. (11), which are further 

processed by individual deep units of 30-hidden layers with 

output ϴ dimension as in Eq.(12). However, the 

corresponding Eq. (13) shows the ARIMA model counterpart 

used to compare the performance of the proposed model. 

𝑒𝐿𝑆𝑇𝑀𝛳(𝑡) =  
1

𝑞
[𝑔(∑ 𝑤𝛳𝑖𝑋𝑖(𝑡)𝑞𝛳

𝑖=1 + 𝑏)                  (12)                                                                                                        

𝐴𝑅𝐼𝑀𝐴𝑝,𝑑,𝑞 =  ∑ 𝑋𝑖(𝑡)𝛳
𝑖=1                                         (13) 

Ct 

(ℎ𝑡−1, 𝑋𝑡) 

(ℎ
𝑡−

1
,𝑋

𝑡
) 

(ℎ𝑡−1, 𝑋𝑡) 

(ℎ𝑡−1, 𝑋𝑡) 

Input Gate 

Output Gate 

Forget Gate 

𝑖𝑡 

𝑔𝑡 

𝐶𝑡 

𝑂𝑡 

ℎ𝑡 
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The proposed model for comparison is shown using Eq. 

(14) for demonstration purposes. 

𝑦𝛳(𝑡) =  𝑃(𝑓(𝑒𝐿𝑆𝑇𝑀𝛳(𝑡), 𝐴𝑅𝐼𝑀𝐴𝑝,𝑑,𝑞) | 

{𝑤𝑠𝑡−1, , … })                                                                  (14)      

Where ws = wind speed, t represents a 10min interval of wind 

data record, while the sigmoid function implements the non-

linear output of Eq. (12), hence, derived from Eq. (15) 

𝑓(𝑥) =  
1

1+ 𝑒−𝑥                                                          (15)                                                                              

Modelling 6-hours ahead as proposed in Eq. (15), where N is 

the number of hours considered in the dataset, results to 300 

minutes ahead as formulated in Eq. (16) 

𝑊𝑑
𝑛𝑜𝑑 = {Ẇ𝑠

𝑛𝑜𝑑[𝑡ℎ + 𝑚𝑖𝑛], Ẇ𝑡,𝑤,𝑡,ℎ
𝑛𝑜𝑑 [𝑡ℎ +

𝑚𝑖𝑛]) | 𝑚𝑖𝑛 = 1, 2, …., 300minutes}                             (16)                           

Here ℎ =
1,2, 3 and 𝑛𝑜𝑑 Є {𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑜𝑓 𝑤𝑖𝑛𝑑 𝑇𝑢𝑟𝑏𝑖𝑛𝑒} – 

not disclosed in the research dataset. Also, 

Ẇ𝑡,𝑤,𝑡,ℎ
𝑛𝑜𝑑  𝑎𝑛𝑑 Ẇ𝑠

𝑛𝑜𝑑  denotes the turbine’s node prediction of 

wind power respectively at time 𝑡 =  𝑡ℎ + 𝑚𝑖𝑛 given wind 

speed.  

V. Experiments 

A. Training and Testing Results.  

Framing feature series is implemented using a window method 

that requires samples featured in current time (t) to predict the 

next time sequence (t+1) knowing prior times t-1, t-2, t-3,…, 

t-n as input variables. This is because from the literature, 

LSTM’s gating parameters decides whether to update the 

current state ɱ to a new candidate state Ɯ to learn from the 

input sequence of the previous state resulting in 6-times, 12-

times and 18-times steps ahead respectively. Training and 

testing accuracy is shown in Figure 7 below for LSTM and the 

proposed eLSTM counterpart. 

 

Figure 7a: 18-times steps-ahead Training and Testing. 

        

Figure 7b: 12-times steps-ahead Training and Testing. 

          

Figure 7c:6-times steps-ahead Training and Testing. 

While training RNN, error is imminent. The algorithm 

experiences errors that need to be minimised. Error function 

E(x) depends on internal learnable parameters of the RNN 

model [40]. During training, we implemented RMSprop as in 

[22, 26, 27] for optimisation and error minimisation. 

VI. Evaluation and Result Presentation  

The paper is evaluated by sequence generation on mean 

squared error (MSE) as in [23], which is averaged over the 

features in the training and test set. MSE score is a metric 

measuring the mean difference between the predicted and the 

actual features. Comparing regularizers on RNN, the MSE on 

training and testing is as shown in Table 5. However, in Table 

6 ARIMA and the eLSTM performance are compared using 

the RMSE metric.   

𝑒𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑋𝑡 −  Ẍ𝑡)2𝑁

𝑡=1                                   (17) 

Sequence generation on root mean squared error (RMSE) and 

MSE criterion is as evaluated in Eq. (18) since RMSE 

punishes large error accumulation over the sequence. 

𝑧𝑒𝑅𝑀𝑆𝐸  = sqrt(𝑒𝑀𝑆𝐸 )                                               (18) 

 

Table 5: Regularisation MSE Results. 

 

 

Table 6: Comparison of ARIMA and eLSTM. 

 

Furthermore, to illustrate the research point, Figure 8 

provides a comparison between ARIMA and the proposed 

model.  

 
eLSTM MSE (%) LSTM MSE (%) 

Exp. 2 0.6241 0.7101 

Exp. 4 0.6730 0.7800 

Exp. 6 0.6221 0.7410 

Exp. 8 0.6100 0.7512 

Exp. 10 0.6013 0.7304 

Dropout 

proportion 

RMSE-

ARIMA 

(%) 

RMSE eLSTM 

(%) 

20%  0.7612 0.6228 

30% 0.8423 0.5095 

50% 0.8531 0.6520 
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Figure 8: Predicted Wind Speed Model 

From the figure, eLSTM tends to learn the data pattern and 

have better mapping for better prediction than the traditional 

LSTM.                                                                                   

VII. Conclusion 

This paper has presented a comparative study of a 

hybrid LSTM and dropout regularisation methods for 

medium-term, 6 hours ahead WFPO prediction based on 

wind speed and considering the stochastic wind 

variation and processes. Wind speed data models from 

PHM are used mainly for training and testing the 

regression models. The MSE and RMSE, tables (5) and 

(6), illustrate how the modelling error has improved at 

various time steps seen in Figure 7 due to the 

implementation of eLSTM. In addition, the modelling 

results implements the integration of multiple wind 

turbine data, which enhances the windfarm performance 

prediction.  
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