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ABSTRACT: 
 
The extended subset construction of lattice-valued Aleshin type finite automata 

is introduced, then the equivalences between lattice-valued finite automat , lattice-
valued deterministic finite automata and lattice-valued finite automata with e-moves 
are proved. A simple characterization of lattice-valued languages recognized by 
lattice-valued finite automata is given, then it is proved that the Kleene theorem holds 
in the frame of lattice-setting. A minimization algorithm of lattice-valued 
deterministic finite automata is presented. In particular, the role of the distributive law 
for the truth valued domain of finite automata is analyzed: the distributive law is not 
necessary to many constructions of lattice-valued finite automata, but it indeed 
provides some convenience in simply processing lattice-valued finite automata.  
KEYWORDS: lattice-valued Aleshin type lattice-valued deterministic finite automata, 

INTRODUCTION:The contribution of this study contains at least three aspects. First, 

as we just said, lattice-valued finite automata in this study is a common generalization 

of fuzzy automata and weighted automata. In this respective, the role of the distributive 

law for the truth valued domain of finite automata is analyzed. It is demonstrated that 

the distributive law is not necessary to many constructions of lattice-valued finite 

automata, but it indeed provides some convenience in simply processing latticevalued 

finite automata. Second, the technique of extended subset construction is introduced, 

using this technique, the equivalence between lattice-valued finite automata and lattice-

valued deterministic finite automata is proved. Some results in [33] were strength, 

especially, the Kleene theorem in lattice-setting is presented. Third, we give a minimal 

algorithm of lattice-valued deterministic finite automata.  

The content of this paper is arranged as follows. In Section 2, the definition of lattice-

valued finite automata is introduced, then the relationship between the extendability of 

the state transition relation d and the distributive law of the lattice l is exploited. Section 

3 introduces the extended subset construction of l-VFA, the determinization of l-VFA 

is shown. The relationship between extended subset construction and lattice-valued 

subset construction and the distributive law of l is discussed. Some results on 

determinization of lattice-valued finite automata in [1] are strengthened. In Section II, 

some simple characterizations of l-valued regular languages are introduced, the 

operations on the l-valued regular languages are discussed and Kleene Theorem in 

lattice setting is established. Section 5 discusses the minimization of l-VDFA, the 

minimal algorithm of l-VDFA is presented. Some remarks are included in the 

conclusion part.  

II LATTICE VALUED FINITE STATE AUTOMATA 

Definition 3.2 (c.f. [22,33,26]). An l-valued automaton with -moves (l-VFA for short) is a 

five-tuple A=(Q,,,I,F) in which all components are the same as in an l-valued automaton 

(without -moves), but the domain of the l-valued transition relation  is changed to Q  (  

{})  Q; that is,  is a mapping from Q  (  {})  Q into l, where  stands for the empty 

string of input symbols. 
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      Now let A = (Q,,, I, F) be an l-valued automaton with -moves. Then the 

recognizability recA is also defined as an l-valued unary predicate over *, and it is given by  

           recA = def(n  0)(1    {}) . . . (n    {}) . (q0Q) . . . (qn  Q) . (q0 

 I  qn  F    (q0,1,q1)    . . .  (qn-1,n,qn)    1 . . .n = ) 

for all   *. The defining equation of recA may be rewritten in terms of truth value as 

follows: 

recA() = V {I(q0)   (q0,1,q1)  . . .  (qn-1,n,qn)  F(q) : n  0, 1 , . . . , n    {} 

satisfying 1 . . .n = , and q0 , . . . , qn  Q}. 

  We shall show that l-VAFA and l-VAFA are equivalent in the sequel. First, we study a 

special kind of l-VFA in which transition is crisp, that is ,  is a crisp subset of Q  (  

{})  Q. In this case,   can be seen as a mapping from Q  (  {}) to 2Q. 

    Let A = (Q,,,q0,F) be an l-VFA with crisp transition and with a unique initial state q0  

Q, the explicit expression of recA can be induced as follows. Frist, we give the extension * : 

2Q  *  2Q using the notion of -closure. For q  Q, the -closure of q, denoted EC(q), is 

defined as, 

    EC(q) = {p  Q : there exists n  0 and q0 , . . . , qn satisfying qi  (qi-1,) for any i=1 , . . . 

, n, in which q0 = q and qn = p }.      

For any subset X of Q , the -closure of X, denoted EC(q), is defined as 

            EC(X) = UqX EC(q). 

In particular, EC({q}) = EC(q). Then * is defined inductively as 

               * (q,) = EC(q), 

               * (q,) = EC((*(q,),)) for any q  Q,   * and   . 

Then  

              * (X,) = UqX * (q,). 

It follows that      

             * (q,) = *(*(q,),)                                                                                                                                     

for any q  Q,  * and   . By the definition of unitary predicate rec over *, the truth 

valued recA for an l-VFA with crisp transition is defined as follows: for any   * , 

       recA() = V{F(q) : q  * (q0,)}. 

   We construct an equivalent l-VAFA  from the above A as follows, where B = (Q, , , q0, 

E). The l-valued transition  is defined as: for any q  Q and   , 
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         (q,) = *(q,). 

If q  q0, then 

        E(q) = F(q), and  E(q0) =  V{F(q) : q  EC (q0)}. 

Note that  has no -transitions. 

III -transitions 

Lemma 3.1 For any l-VAFA with strong  transition A, the I-VFA B  constructed as above is 

equivalent to A,i.e., recA = recB. 

Proof. We wish to show by induction on|| that *(q,) = *(q,). However, this statement 

may not be true for  = , since *(q,) = {q}, while *(q,) = EC(q). We therefore begin 

our induction at 1. 

Let || = 1. Then  is a symbol , and (q,) = *(q,) by definition of . Suppose that the 

hypothesis holds for inputs of length n or less. Let   = x be a straight of length of n+1 with 

symbol  in . Then 

*(q, x) = (*(q,x),). 

By the inductive hypothesis, *(q, x) = *(q, x) = *(q, x). Let *(q, x)  =X, we must show 

that (X, ) = *(q, x) . But (X, ) = 

UqQ (q, ) = UqX (q,)                                  

Then as X =  *(q, x)  we have            UqQ *(q, )    = *(q, x).  

Thus *(q, x) = *(q, x).         

To complete the proof we shall show that recB() = V{F(q) : q  *(q0,)}. 

If   = , this statement is immediate from the definition of E. That is,  *(q0,) = {q0}, then 

recB() = V{E(q) : q  *(q0,) } = E(q0) = V{F(q) : q *(q0, )}. 

If   , then  = x for some symbol .We have two cases to discuss. 

Case I: q0 ’ 
*(q0,x). by the definition of E and the equality  *(q0,x) = *(q0,x) , it 

follows that recB(x) = V{E(q) : q  *(q0,x)} = V{F(q) : q  *(q0,x)}. 

Case II: q0 
*( q0,x). then EC(q0)  *( q0,x). Thus, 

, recB(x) = V{E(q) : q *(q0,x)} = V{F(q) : q *( q0,x)} =V{E(q) : q*(q0,x) – 

{q0}} V E(q0) = V{F(q) : q  *(q0,x) – {q0}} V V{F(q) : q EC(q0)} = V{F(q) : q 

*(q0,x)}. 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 9 



 

 
 

  

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING 

 

Hence for any  *, recB() = V{F(q) : q*(q0,x)} = recA(). This shows that recA = 

recB, and thus A and B are equivalent. 

Let A=(Q,,,I,F) be an I-VFA. We construct an equivalent I-VFA B = (P,,,S,E) with 

crisp transition from A as follows. 

Let X = Im(I)  Im(F), and I1=XA. Choose P = 2Q*(I
1

-{0}), and S = {(q,I(q)) : qQ and I(q)  

0},then P is a finite set and SP. The state transition  : P (  {}) -> P is defined by, 

({(q,r)},) = {( p,r(q,,p)): pQ and r(q,,p)0} 

For any (q,r)Q (l1 – {0}) and     {}. We define (Z,) =U(q,r)Z({(q,r)},) 

For any Zp and     {}. Then  is well defined as discussed in the extended subset 

construction from an l-VFA to an l-VDFA. The lattice-valued final state E: P-> l is defined 

as, 

E(Z) = V{r F(q) : (q,r)  Z}. 

Lemma 3.2 For any l-VAFA with crisp transition A the l-VFA B constructed as above is 

equivalent to A, i.e, recA = recB  

Proof: The proof is very similar to that of Theorem 3.1, we omit it here. 

Combining the above two lemmas, we can conclude the following theorem which shows 
the equivalence between l-VAFAe and l-VAFA. 
 
Theorem 3.1 For any l-VAFAe A, there is an l-VFA B such that A and B are equivalent, i.e., 

recA ¼ recB. 
Combining Theorems 3.1 and 3.2, we can see the equivalence between l-VAFAe, l-VAFA 
and l-VDFA. 

 
Corollary 3.1. For any l-VAFAe A, there is an l-VDFA B such that A and B are equivalent, 

i.e., recA ¼ recB. 
 

As an application of Theorem 3.1, we present pumping lemma in lattice-valued setting as 

follows, which is independent of the distributive law of the used truth-valued lattice. Qiu has 

presented the pumping lemma under automata theory based on complete residuated lattice-

valued logic recently, and see [26] for the details. 
 
Proposition 3.1 (Pumping lemma in lattice setting). For an l-regular language A : * ? l, 

there exists positive integer n, for any input string z   *, if |z|  n, then there are u,v,w  

* such that |uv|  n, v , z = uvw, and for any non-negative integer k, the equality A(uvkw) 
= A(uvw) holds. 

 

Proof. Since A is l-regular, it is accepted by an l-VDFA A = (Q, ,,q0,F) with some 

particular number of states, say n. Consider an input of n or more symbols z = 1…..m m n, 

and for i = 1, . . ., m, let *(q0, 1…..m) = qi. It is not possible for each of the n + 1 states q0, 

. . ., qn be different, since there are only n different states. Thus there are two integers j1 and 

j2, 
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 0j1 j2n such that qj1  = qj2. Let u = 1….. j1,  v=  j1+1 ……. j2   w= j2+1…. m , then 

|uv|=j2  n v, and z=uvw. Observing that *(q0, 1….j1 j2+1….m)= *(*( q0, 1….j1 ) , 

j2+1…m) = * (qj1, j2+1…m)= * (qj2, j2+1…m) and for any k  1 *(q0, 

1…..j1(j1+1……j12 )
k j2+1…..m ) = *(*(*( q0, 1….j1 ), (j1+1….j2 )

k),. j2+1…….m = 

*(*( qj1,j1+1….j2 )
k), j2+1 ……m  = *( qj2,j2+1….jm )= qm. Therefore , for any k  0, 

A(uvkw) 

=recA (uvkw)= F(* (q0 , uvkw)) = F(qm)= F(* (q0 , uvw)) = recA (uvw)= A(uvw). 
 

4. Kleene Theorem for l-valued finite automata 
 

We use lR() to denote the set of l-regular languages over . In this section, we will study 

the regular operations on lR(), and show that the Kleene theorem (c.f. [12]) holds for l-VFA. 

As a corollary, we shall show that Kleene theorem holds under quantum logic, which 

strengthens the results obtained in [33]. Indeed, in [33], the author declared that Kleene 

theorem in quantum logic was relied on the distributive law of orthomodular lattice, we shall 

show that this restriction is not necessary.  
Let us first give a simple characterization of l-valued regular languages. 

 

Theorem 4.1. Let A : *  l be an l-valued language over . Then the following statements 

are equivalent. 
 

(i) A is an l-regular language.   
(ii) There exist k1, . . .,km  l _{0}, and regular languages L1, . . .,Lm such that A 

=Vm
i=1ki lLi , where 1Li denotes the characteristic function of Li.  

(iii) There exist k1, . . .,km  l  {0}, and pairwise disjoint regular languages L1, . . .,Lm 

satisfying the equality A =Vm
i=1ki1Li. 

 

Proof: 

 

(i) => (iii) Since A is an l-valued regular language, there is an l-VDFA A = (Q, ,,q0,F) to 

recognize A. That is, for all * A() =  recA() =  F(* (q , w ). Write Im(F) - {0} = {k1, . . 

., km}, and let Fi = {q  Q : F(q) = ki}. For this Fi, we construct a DFA, Ai  = (Q, ,,q0,F). 

Let the language recognized by Ai be Li, then Li is a regular language, and evidently, the 

family  {L1, . . .m,Lm} is pairwise disjoint. Moreover, A() = r iff F(*(q0, )) = r, iff there is 

i such that r = ki and   Li, which shows that A =  Vm
i=1ki lLi 

(iii)=>(ii) is obvious  

(ii)=>(i) Since each Li is regular, there is a DFA  Ai = (Q, ,,q0,Fi) to recognize LI   We can 

assume that Qi = Qj =  whenever i  j. Define an l=VFA A= (Q, ,,q0,F) as follows , Q= 

Um
i=1Qi { q0} where q0   Um

i=1Qi  

And :Q x 2q is ( q0, ) ={1q01,),…..,m(q0m, )},for qQi,(q,)}; F(q0) = V{ki: 

q01Fi} and when q  q0, 

F(q) =    ki if q Fi, 

              0 

            otherwise. 

Then it can be Then it can be easily verified that A = recA = Vm
i=1ki lLi  . Hence A is an l-

valued regular language.  

We call the l-valued language satisfying the condition (ii) or (iii) in the above theorem the l-

valued recognizable step language, and write the set of all l-valued recognizable languages on 
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R as step(R), which is equal to lR().  

 The following proposition gives the stratified characterization of l-valued 

recognizable step languages. 

Corollary 4.1. Let A : Σ* → l be an l-valued language over Σ. Then the following statement 

are equivalent 

(i) A is an l-regular language.  

(ii) The image set Im(A) is finite, and for any r ϵ Im(A) - {0}, the r-cut of A, Ar = {ω 
ϵ Σ* : A(ω) ≥ r} is a regular language over Σ and A = VrϵIm-{0}r1Ar.  

(iii)  The image set Im(A) is finite, and for any r ϵ Im(A) - {0}, the r-level of A, A[r] = 
{ ω ϵ Σ* : A(ω) = r} is a regular language over Σ and A = VrϵIm_{0}r1A[r]. 

 

Theorem 4.2. The family step(Σ) or lR(Σ) is closed under the operations of union, 

intersection, scalar product, concatenation and Kleene closure. 

Proof. Let A,B ϵ step(Σ). By Theorem 4.1 , we can assume A = Vm
i=1ki1Li , B= Vn

j=1kj1Mj , 

where, all Li and Mj are regular languages and {Li}m
i=1 are pairwise disjoint, {Mj}

m
i=1 are 

also pairwise disjoint.  With respect to the union, we have A V B = Vm
i=1ki1Li V Vn

j=1kj1Mj 

.By Theorem 4.1 , it follows that A Ʌ B ϵ step(Σ). 

        With respect to the intersection, we have A Ʌ B = Vm
i=1 V

n
j=1(ki Ʌ dj) 1Li ח Mj . By 

Theorem 4.1 , it follows that A Ʌ B ϵ step(Σ). 

         With respect to the scalar product, for each r ϵ l, we have rA(ω) = r Ʌ A(ω), then rA 

= Vm
i=1(r Ʌ ki) 1Li .Therefore, rA ϵ step(Σ). 

         For the operation o concatenation, since AB(ω) = V{A(ω1) Ʌ B(ω2) : ω =ω1ω2}, it   

       

     For the kleene closure, A* is defined by, A*(ω) = V {A(ω1) Ʌ . . . A(ωk) : k ≥ 0, ω =ω1. . 

.ωk} for any ω ϵ Σ*. Since A = Vm
i=1ki1Li and L1, . . . ,Lm are pairwise disjoint regular 

languages and ki ≠ 0 for each i, t follows that lm(A) – {0} = {k1, . . . ,km}, and Li = { ω ϵ Σ* : 

A(ω) = ki} (i=1, . . . ,m).For any nonempty subset K of the set {1,2, . . .,m}, ew can assume 

that K = {i1, . . .,is}. Let  rK = ki1 Ʌ. . .Ʌ kis, L(K) = Up1 ...ps L
+

p1L
+

p2L
*
 p1L

+
p3(L p1 U L p2)* . . 

.L+
 ps-1 (L p1 U . . . U L ps-2)* L+

 ps (L p1 U . . . U L ps)*, where p1. . .ps is a permutation of {i1, . . 

.,is}, and L(K) is taken unions under all permutations of {i1, . . .,is}. Hence L(K) is a regular 

language. It is easily verified that A* = Vø≠K ≤{1,2,...,m}rk 1L(K) V 1{ε}. By Theorem 4.1 , it 

follows that A*  step(Σ).    

 

Remark 4.1. Recall that a negation on a lattice l is a mapping h from l into l such that, 

a 6 b implies h(a) P h(b) and hh(a) = a for any a,b 2 l. Furthermore, if the negation h 

also satisfies the conditions: a ^ h(a) = 0 and a _ h(a) = 1 for any a 2 l, then h is called 

the complement over l. In this case, l is an orthocompletment lattice. An orthomodular 

lattice is an orthocompletment lattice satisfying the orthomodular laws as presented as 

follows:  

a  b implies a  (h(a)  b) = b:  

If l is a lattice with a negation h, then for an l-language A : * l, we can define the negation 
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of A on l( *) as, h(A)(x) = h(A(x)). Then for any A  lR(*), h(A) is also l-regular. In fact, 

if A =⋁𝑖=1
𝑚 h(ki)1* =1, for some ki  l and regular language Li over ,  

then h(A) = =⋁𝑖=1
𝑚 h(ki)1* -1,. l*(-L1…..Ln) 

 

Definition 4.1 [19] The language of l-valued regular expressions over alphabet  has the 

alphabet  (∑∪ {𝜀, ∅}) ∪ (𝑙 ∪ {+, −,∗}). The symbols in ∑∪ {𝜀, ∅} will be used to denote 

atomic expressions, and the symbols in 𝑙 ∪ {+, −,∗} will be used to stand for operators for 

building up compound expressions:  *  and all r  l are the unary operators, and +, -  are 

binary ones. We use α, β  to act as meta-symbols for regular expressions and L(α) for the 

language denoted by expression α. More explicitly, L(a) will be used to denote an l-valued 

subset of ∑*; that is, L(α)  l(∑*). The l-valued regular expressions and the l-valued 

languages denoted by them are formally defined as follows:  

(i) For each σ ∑,  r is a regular expression, and L(σ) = {σ};  𝜀 and ∅; are regular  

            expressions, and L(𝜀) = { 𝜀 }, L(∅) = ∅.  

(ii) If both α and β are regular expressions, then for each r  l, rα, α + β, α - β, α* are all 

regular expressions, and L(rα) = rL(α), L(α + β) = L(α)  L(β), L(α - β) = L(α)L(β), 

L(α*) = L(α)*.  
 

Theorem 4.3 (Kleene Theorem in lattice setting). For an l-valued language A  l(∑*), A 

can be recognized by an l-VFA iff there exists an l-valued regular expression a over ∑ such 

that A = L(α).  
 

 

 

Proof. If A can be recognized by an l-VFA, then by Theorem 4.1, there exist k1, . . .,kn  l - 

{0}, and regular languages L1, . . .,Ln such that A = ⋁𝑖=1
𝑛

 ki, li. Since each Li is a regular 

language, by classical Kleene Theorem, there exists a regular expression αi over ∑ such that 

L(αi) = Li. Let α = k1a1 + ….. + knan, then α is an l-valued regular expression, and L(α) = 

⋁𝑖=1
𝑛 kiL(α) = ⋁𝑖=1

𝑛 kili = A  

 

Conversely, assume that there exists an l-valued regular expression α such that A = 

L(α). We show that A can be recognized by an l-VFA inductively on the number of 

operation symbols occurring in α. If there is no operation symbol in α, then α = σ  ∑, 𝜀 or 

∅. In this case, L(α) = {σ}, {𝜀} or ∅, and L(a) can be recognized by a classical DFA. The 

classical DFA is evidently an l-VDFA, so L(α) can be recognized by an l-VDFA in this case. 

Inductively, since the family of recognizable  languages by l-VDFA is closed under union, 

intersection, scalar product, concatenation and Kleene closure (by Theorem 4.2), it follows 

that L(α) can be recognized by an l-VDFA for any l-valued regular expression α.  

Remark 4.2. As a corollary, when l is an orthomodular lattice, Theorem 4.3 is exactly the 

Kleene theorem in quantum logic. Therefore, the strictly restrictions on Kleene theorem 

under quantum logic as presented in [33] are not necessary. It also shows that Kleene 
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theorem holds in any lattice-valued finite automata, the distributive law is not necessary to 

the validity of Kleene theorem.  

 

5.Minimization of lattice-valued finite automata  
 

Finite automata are used to design complex system. Finding a minimum 

representation of finite automata is a critical is sue arising in such design. In this part, we 

shall extend the minimal algorithm of deterministic finite automata (DFA) in classical logic 

[8] to those of lattice setting. To make the meaning of minimization of an l-VDFA clear, we 

first introduce some  necessary notions, which are slight modifications of related notions in 

[20,23].  

Given an l-VDFA A = Q, ∑, 𝛿, q0, F), let Qa = {d*(q0,𝜃) : 𝜃 𝜖  ∑*}. If Q = Qa, then A 

is called accessible. The elements of Qa are called accessible states, and the elements of Q - 

Qa are called inaccessible elements. Consider 𝛿a = 𝛿|Qa×∑*, the restriction mapping of 𝛿 on 

Qa x ∑, and Fa = F|Qa , the restriction mapping on Qa. Then Aa = (Qa ,∑,  𝛿
a , q0 , F

a) is called 

the accessible part of A. It can be easily shown that these two l-VDFAs are equivalent, that 

is, they accept the same l-language, recA =  recAa . And we say that an l-VDFA is accessible 

iff A = Aa .  

Obviously, 𝒜
 a is constructed from 𝒜 by removing all inaccessible states. Next, we give 

some notions necessary to compare two or more l-VDFAs. Given two l-VDFAs 𝒜 = (Q , ∑; 

𝛿; q0, F) and ℬ = (P, ∑, 𝜂, p0, E), a homomorphism from 𝒜 to ℬ, denoted 𝜑 : 𝒜→ ℬ, is a 

mapping 𝜑 : Q → P such that 𝜑 (𝛿(q,σ)) = 𝜂(𝜑(q),σ), 𝜑(q0) = p0 and E(𝜑(q)) ≤ F(q) for any 

q  Q and σ  ∑. It can be easily deduced that 𝜑(𝛿*(q,𝜃)) = 𝜂*(𝜑(q),𝜃) for any 𝜃  ∑*. 

Furthermore, if E(p) = ⋁{F(q) : 𝜑(q) = p}, then 𝜑 is called a strong homomorphism. A 

strong homomorphism  : 𝒜 → ℬ is called an isomorphism if u is one-to-one and onto.  

 

Lemma 5.1. For two l-VDFAs 𝒜 and ℬ, a homomorphism 𝜑 : 𝒜 → ℬ is an isomorphism 

iff there is another homomorphism 𝜓 : ℬ → 𝒜 such that 𝜑 ° 𝜓 = 1ℬ  and 𝜓 ° 𝜑 = 1𝒜 .  

Proof. ‘‘If part’’: In this case, 𝜑 is a bijection, i.e., 𝜑 is one-to-one and onto. What is left is 

to show that 𝜑 is a strong homomorphism. In fact, for any q  Q, E(𝜑 (q)) ≤ F(q) = F(𝜓 𝜑 

(q)) ≤ E(𝜑(q)), thus E(𝜑 (q)) = F(q)‘‘Only if part’’: Since 𝜑 is an isomorphism, 

𝜑 is a bijection from Q to P,  then  there exists an inverse of 𝜑, which is denoted  as   𝜓 :P → 

Q; we show that 𝜓 is also a homomorphism. First, since 𝜑 (q0) = p0, 𝜓 (p0) = q0. Second, if 

𝜓 (p) = q, then 𝜑 (𝛿 *(q,𝜃)) = 𝜂*( 𝜑 (q), 𝜃) = 𝜂*(p, 𝜃), thus 𝜓 (𝜂*(p, 𝜃)) = 𝛿 *(q, 𝜃) = 𝛿 

*( 𝜓 (p), 𝜃). Finally, since 𝜑 is strong and bijection, E(p) = F(𝜓 (p)).  
 

Lemma 5.2. If  : 𝒜 ! B is a homomorphism between two l-VDFAs, then  𝑟𝑒𝑐ℬ 
≤  𝑟𝑒𝑐𝒜  i.e., 

 𝑟𝑒𝑐ℬ 
(𝜃) ≤ 𝑟𝑒𝑐𝒜(𝜃)  for any 𝜃  ∑*.   Furthermore, if 𝜑 is     strong,      then   𝑟𝑒𝑐𝒜 =  𝑟𝑒𝑐ℬ 

 

. Proof. For any 𝜃  ∑* ,  𝑟𝑒𝑐ℬ 
(𝜃)  = 𝐸(𝜂*(𝜑(p0),𝜃)) ; 𝐸(𝜂*(𝜑(q0),𝜃)) = 𝐸(𝜑(𝛿*(q0,𝜃)) ≤ 

F((𝛿*(q0,𝜃)) =  𝑟𝑒𝑐𝒜 
(𝜃) that is  𝑟𝑒𝑐ℬ 

≤  𝑟𝑒𝑐𝒜 . If 𝜑 is strong, then  𝑟𝑒𝑐ℬ 
(𝜃)  = 𝐸(𝜂*(p0),𝜃)) 
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= 𝐸(𝜂*(𝜑(q0),𝜃)) = 𝐸(𝜑(𝛿*(q0,𝜃)) = ⋁(𝐹(𝑞): 𝜑(𝑞) = 𝜑(𝛿*(q0,𝜃) ≥ 𝐹(𝛿*(q0,𝜃) = 𝑟𝑒𝑐𝒜(𝜃), 

that is ,  𝑟𝑒𝑐ℬ 
≥ 𝑟𝑒𝑐𝒜 , thus  𝑟𝑒𝑐ℬ 

= 𝑟𝑒𝑐𝒜  . 

For two equivalent l-VDFAs 𝒜 and B, given a homomorphism u : 𝒜 → ℬ, and 

consider the restriction of 𝜑 on Aa . For any q  Qa, there exists 𝜃  ∑* such that     q = 

𝛿*(q0, 𝜃), in this case, 𝜑 (q) = 𝜑 (𝛿*(q0, 𝜃)) = 𝜂*(p0, 𝜃). Let p = 𝜂*(p0, 𝜃), then     p  Pa. 

This demonstrates that the restriction of 𝜑 on Aa is just the homomorphism 𝜑
a : Aa → Ba . 

Furthermore, we show that 𝜑
a is also strong and surjective. For any p  Pa, there is 𝜃  ∑* 

such that p = 𝜂*(p0, 𝜃). We select q = 𝛿 *(q0, 𝜃). Then q  Qa and 𝜑
a(q) = p, thus 𝜑

a is 

surjective. Since 𝜑
a is surjective and 𝐹(𝛿*(q0,𝜃) =   𝑟𝑒𝑐𝒜 

(𝜃)    =  𝑟𝑒𝑐ℬ 
(𝜃)   = 𝐸(𝜂*(q0),𝜃))  

= 𝐸(𝜑(𝛿*(q0,𝜃)) , 𝜑𝑎is also a strong homomorphism. We thus obtain the following results.  
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