

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

LATTICE VALUED ALESHIN TYPE AUTOMATA WITH -MOVES

A.Jeyanthi1 V.Kalpana2

FACULTY, ANNA UNIVERSITY, REGIONAL OFFICE, MADUAI, TAMILNADU, I NDIA

ABSTRACT:

The extended subset construction of lattice-valued Aleshin type finite automata

is introduced, then the equivalences between lattice-valued finite automat , lattice-
valued deterministic finite automata and lattice-valued finite automata with e-moves
are proved. A simple characterization of lattice-valued languages recognized by
lattice-valued finite automata is given, then it is proved that the Kleene theorem holds
in the frame of lattice-setting. A minimization algorithm of lattice-valued
deterministic finite automata is presented. In particular, the role of the distributive law
for the truth valued domain of finite automata is analyzed: the distributive law is not
necessary to many constructions of lattice-valued finite automata, but it indeed
provides some convenience in simply processing lattice-valued finite automata.
KEYWORDS: lattice-valued Aleshin type lattice-valued deterministic finite automata,

INTRODUCTION:The contribution of this study contains at least three aspects. First,

as we just said, lattice-valued finite automata in this study is a common generalization

of fuzzy automata and weighted automata. In this respective, the role of the distributive

law for the truth valued domain of finite automata is analyzed. It is demonstrated that

the distributive law is not necessary to many constructions of lattice-valued finite

automata, but it indeed provides some convenience in simply processing latticevalued

finite automata. Second, the technique of extended subset construction is introduced,

using this technique, the equivalence between lattice-valued finite automata and lattice-

valued deterministic finite automata is proved. Some results in [33] were strength,

especially, the Kleene theorem in lattice-setting is presented. Third, we give a minimal

algorithm of lattice-valued deterministic finite automata.

The content of this paper is arranged as follows. In Section 2, the definition of lattice-

valued finite automata is introduced, then the relationship between the extendability of

the state transition relation d and the distributive law of the lattice l is exploited. Section

3 introduces the extended subset construction of l-VFA, the determinization of l-VFA

is shown. The relationship between extended subset construction and lattice-valued

subset construction and the distributive law of l is discussed. Some results on

determinization of lattice-valued finite automata in [1] are strengthened. In Section II,

some simple characterizations of l-valued regular languages are introduced, the

operations on the l-valued regular languages are discussed and Kleene Theorem in

lattice setting is established. Section 5 discusses the minimization of l-VDFA, the

minimal algorithm of l-VDFA is presented. Some remarks are included in the

conclusion part.

II LATTICE VALUED FINITE STATE AUTOMATA

Definition 3.2 (c.f. [22,33,26]). An l-valued automaton with -moves (l-VFA for short) is a

five-tuple A=(Q,,,I,F) in which all components are the same as in an l-valued automaton

(without -moves), but the domain of the l-valued transition relation  is changed to Q  ( 

{})  Q; that is,  is a mapping from Q  (  {})  Q into l, where  stands for the empty

string of input symbols.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 7

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 Now let A = (Q,,, I, F) be an l-valued automaton with -moves. Then the

recognizability recA is also defined as an l-valued unary predicate over *, and it is given by

   recA = def(n  0)(1    {}) . . . (n    {}) . (q0Q) . . . (qn  Q) . (q0

 I  qn  F  (q0,1,q1)    . . .  (qn-1,n,qn)    1 . . .n = )

for all   *. The defining equation of recA may be rewritten in terms of truth value as

follows:

recA() = V {I(q0)   (q0,1,q1)  . . .  (qn-1,n,qn)  F(q) : n  0, 1 , . . . , n    {}

satisfying 1 . . .n = , and q0 , . . . , qn  Q}.

 We shall show that l-VAFA and l-VAFA are equivalent in the sequel. First, we study a

special kind of l-VFA in which transition is crisp, that is ,  is a crisp subset of Q  ( 

{})  Q. In this case,  can be seen as a mapping from Q  (  {}) to 2Q.

 Let A = (Q,,,q0,F) be an l-VFA with crisp transition and with a unique initial state q0 

Q, the explicit expression of recA can be induced as follows. Frist, we give the extension * :

2Q  *  2Q using the notion of -closure. For q  Q, the -closure of q, denoted EC(q), is

defined as,

 EC(q) = {p  Q : there exists n  0 and q0 , . . . , qn satisfying qi  (qi-1,) for any i=1 , . . .

, n, in which q0 = q and qn = p }.

For any subset X of Q , the -closure of X, denoted EC(q), is defined as

 EC(X) = UqX EC(q).

In particular, EC({q}) = EC(q). Then * is defined inductively as

 * (q,) = EC(q),

 * (q,) = EC((*(q,),)) for any q  Q,   * and   .

Then

 * (X,) = UqX * (q,).

It follows that

 * (q,) = *(*(q,),)

for any q  Q,  * and   . By the definition of unitary predicate rec over *, the truth

valued recA for an l-VFA with crisp transition is defined as follows: for any   * ,

 recA() = V{F(q) : q  * (q0,)}.

 We construct an equivalent l-VAFA  from the above A as follows, where B = (Q, , , q0,

E). The l-valued transition  is defined as: for any q  Q and   ,

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 8

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 (q,) = *(q,).

If q  q0, then

 E(q) = F(q), and E(q0) = V{F(q) : q  EC (q0)}.

Note that  has no -transitions.

III -transitions

Lemma 3.1 For any l-VAFA with strong transition A, the I-VFA B constructed as above is

equivalent to A,i.e., recA = recB.

Proof. We wish to show by induction on|| that *(q,) = *(q,). However, this statement

may not be true for  = , since *(q,) = {q}, while *(q,) = EC(q). We therefore begin

our induction at 1.

Let || = 1. Then  is a symbol , and (q,) = *(q,) by definition of . Suppose that the

hypothesis holds for inputs of length n or less. Let  = x be a straight of length of n+1 with

symbol  in . Then

*(q, x) = (*(q,x),).

By the inductive hypothesis, *(q, x) = *(q, x) = *(q, x). Let *(q, x) =X, we must show

that (X, ) = *(q, x) . But (X, ) =

UqQ (q, ) = UqX (q,)

Then as X = *(q, x) we have UqQ *(q, ) = *(q, x).

Thus *(q, x) = *(q, x).

To complete the proof we shall show that recB() = V{F(q) : q  *(q0,)}.

If  = , this statement is immediate from the definition of E. That is, *(q0,) = {q0}, then

recB() = V{E(q) : q  *(q0,) } = E(q0) = V{F(q) : q *(q0, )}.

If   , then  = x for some symbol .We have two cases to discuss.

Case I: q0 ’ 
(q0,x). by the definition of E and the equality (q0,x) = *(q0,x) , it

follows that recB(x) = V{E(q) : q  *(q0,x)} = V{F(q) : q  *(q0,x)}.

Case II: q0 
(q0,x). then EC(q0)  (q0,x). Thus,

, recB(x) = V{E(q) : q *(q0,x)} = V{F(q) : q *(q0,x)} =V{E(q) : q*(q0,x) –

{q0}} V E(q0) = V{F(q) : q  *(q0,x) – {q0}} V V{F(q) : q EC(q0)} = V{F(q) : q

*(q0,x)}.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 9

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Hence for any  *, recB() = V{F(q) : q*(q0,x)} = recA(). This shows that recA =

recB, and thus A and B are equivalent.

Let A=(Q,,,I,F) be an I-VFA. We construct an equivalent I-VFA B = (P,,,S,E) with

crisp transition from A as follows.

Let X = Im(I)  Im(F), and I1=XA. Choose P = 2Q*(I
1

-{0}), and S = {(q,I(q)) : qQ and I(q) 

0},then P is a finite set and SP. The state transition  : P (  {}) -> P is defined by,

({(q,r)},) = {(p,r(q,,p)): pQ and r(q,,p)0}

For any (q,r)Q (l1 – {0}) and     {}. We define (Z,) =U(q,r)Z({(q,r)},)

For any Zp and     {}. Then  is well defined as discussed in the extended subset

construction from an l-VFA to an l-VDFA. The lattice-valued final state E: P-> l is defined

as,

E(Z) = V{r F(q) : (q,r)  Z}.

Lemma 3.2 For any l-VAFA with crisp transition A the l-VFA B constructed as above is

equivalent to A, i.e, recA = recB

Proof: The proof is very similar to that of Theorem 3.1, we omit it here.

Combining the above two lemmas, we can conclude the following theorem which shows
the equivalence between l-VAFAe and l-VAFA.

Theorem 3.1 For any l-VAFAe A, there is an l-VFA B such that A and B are equivalent, i.e.,

recA ¼ recB.
Combining Theorems 3.1 and 3.2, we can see the equivalence between l-VAFAe, l-VAFA
and l-VDFA.

Corollary 3.1. For any l-VAFAe A, there is an l-VDFA B such that A and B are equivalent,

i.e., recA ¼ recB.

As an application of Theorem 3.1, we present pumping lemma in lattice-valued setting as

follows, which is independent of the distributive law of the used truth-valued lattice. Qiu has

presented the pumping lemma under automata theory based on complete residuated lattice-

valued logic recently, and see [26] for the details.

Proposition 3.1 (Pumping lemma in lattice setting). For an l-regular language A : * ? l,

there exists positive integer n, for any input string z  *, if |z|  n, then there are u,v,w 

* such that |uv|  n, v , z = uvw, and for any non-negative integer k, the equality A(uvkw)
= A(uvw) holds.

Proof. Since A is l-regular, it is accepted by an l-VDFA A = (Q, ,,q0,F) with some

particular number of states, say n. Consider an input of n or more symbols z = 1…..m m n,

and for i = 1, . . ., m, let *(q0, 1…..m) = qi. It is not possible for each of the n + 1 states q0,

. . ., qn be different, since there are only n different states. Thus there are two integers j1 and

j2,

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 10

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 0j1 j2n such that qj1 = qj2. Let u = 1….. j1, v=  j1+1 ……. j2 w= j2+1…. m , then

|uv|=j2  n v, and z=uvw. Observing that *(q0, 1….j1 j2+1….m)= *(*(q0, 1….j1) ,

j2+1…m) = * (qj1, j2+1…m)= * (qj2, j2+1…m) and for any k  1 *(q0,

1…..j1(j1+1……j12)
k j2+1…..m) = *(*(*(q0, 1….j1), (j1+1….j2)

k),. j2+1…….m =

*(*(qj1,j1+1….j2)
k), j2+1 ……m = *(qj2,j2+1….jm)= qm. Therefore , for any k  0,

A(uvkw)

=recA (uvkw)= F(* (q0 , uvkw)) = F(qm)= F(* (q0 , uvw)) = recA (uvw)= A(uvw).

4. Kleene Theorem for l-valued finite automata

We use lR() to denote the set of l-regular languages over . In this section, we will study

the regular operations on lR(), and show that the Kleene theorem (c.f. [12]) holds for l-VFA.

As a corollary, we shall show that Kleene theorem holds under quantum logic, which

strengthens the results obtained in [33]. Indeed, in [33], the author declared that Kleene

theorem in quantum logic was relied on the distributive law of orthomodular lattice, we shall

show that this restriction is not necessary.
Let us first give a simple characterization of l-valued regular languages.

Theorem 4.1. Let A : *  l be an l-valued language over . Then the following statements

are equivalent.

(i) A is an l-regular language.
(ii) There exist k1, . . .,km  l _{0}, and regular languages L1, . . .,Lm such that A

=Vm
i=1ki lLi , where 1Li denotes the characteristic function of Li.

(iii) There exist k1, . . .,km  l  {0}, and pairwise disjoint regular languages L1, . . .,Lm

satisfying the equality A =Vm
i=1ki1Li.

Proof:

(i) => (iii) Since A is an l-valued regular language, there is an l-VDFA A = (Q, ,,q0,F) to

recognize A. That is, for all * A() = recA() = F(* (q , w). Write Im(F) - {0} = {k1, . .

., km}, and let Fi = {q  Q : F(q) = ki}. For this Fi, we construct a DFA, Ai = (Q, ,,q0,F).

Let the language recognized by Ai be Li, then Li is a regular language, and evidently, the

family {L1, . . .m,Lm} is pairwise disjoint. Moreover, A() = r iff F(*(q0, )) = r, iff there is

i such that r = ki and  Li, which shows that A = Vm
i=1ki lLi

(iii)=>(ii) is obvious

(ii)=>(i) Since each Li is regular, there is a DFA Ai = (Q, ,,q0,Fi) to recognize LI We can

assume that Qi = Qj =  whenever i  j. Define an l=VFA A= (Q, ,,q0,F) as follows , Q=

Um
i=1Qi { q0} where q0  Um

i=1Qi

And :Q x 2q is (q0, ) ={1q01,),…..,m(q0m, )},for qQi,(q,)}; F(q0) = V{ki:

q01Fi} and when q  q0,

F(q) = ki if q Fi,

 0

 otherwise.

Then it can be Then it can be easily verified that A = recA = Vm
i=1ki lLi . Hence A is an l-

valued regular language.

We call the l-valued language satisfying the condition (ii) or (iii) in the above theorem the l-

valued recognizable step language, and write the set of all l-valued recognizable languages on

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 11

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

R as step(R), which is equal to lR().

 The following proposition gives the stratified characterization of l-valued

recognizable step languages.

Corollary 4.1. Let A : Σ* → l be an l-valued language over Σ. Then the following statement

are equivalent

(i) A is an l-regular language.

(ii) The image set Im(A) is finite, and for any r ϵ Im(A) - {0}, the r-cut of A, Ar = {ω
ϵ Σ* : A(ω) ≥ r} is a regular language over Σ and A = VrϵIm-{0}r1Ar.

(iii) The image set Im(A) is finite, and for any r ϵ Im(A) - {0}, the r-level of A, A[r] =
{ ω ϵ Σ* : A(ω) = r} is a regular language over Σ and A = VrϵIm_{0}r1A[r].

Theorem 4.2. The family step(Σ) or lR(Σ) is closed under the operations of union,

intersection, scalar product, concatenation and Kleene closure.

Proof. Let A,B ϵ step(Σ). By Theorem 4.1 , we can assume A = Vm
i=1ki1Li , B= Vn

j=1kj1Mj ,

where, all Li and Mj are regular languages and {Li}m
i=1 are pairwise disjoint, {Mj}

m
i=1 are

also pairwise disjoint. With respect to the union, we have A V B = Vm
i=1ki1Li V Vn

j=1kj1Mj

.By Theorem 4.1 , it follows that A Ʌ B ϵ step(Σ).

 With respect to the intersection, we have A Ʌ B = Vm
i=1 V

n
j=1(ki Ʌ dj) 1Li ח Mj . By

Theorem 4.1 , it follows that A Ʌ B ϵ step(Σ).

 With respect to the scalar product, for each r ϵ l, we have rA(ω) = r Ʌ A(ω), then rA

= Vm
i=1(r Ʌ ki) 1Li .Therefore, rA ϵ step(Σ).

 For the operation o concatenation, since AB(ω) = V{A(ω1) Ʌ B(ω2) : ω =ω1ω2}, it

 For the kleene closure, A* is defined by, A*(ω) = V {A(ω1) Ʌ . . . A(ωk) : k ≥ 0, ω =ω1. .

.ωk} for any ω ϵ Σ*. Since A = Vm
i=1ki1Li and L1, . . . ,Lm are pairwise disjoint regular

languages and ki ≠ 0 for each i, t follows that lm(A) – {0} = {k1, . . . ,km}, and Li = { ω ϵ Σ* :

A(ω) = ki} (i=1, . . . ,m).For any nonempty subset K of the set {1,2, . . .,m}, ew can assume

that K = {i1, . . .,is}. Let rK = ki1 Ʌ. . .Ʌ kis, L(K) = Up1 ...ps L
+

p1L
+

p2L
*
 p1L

+
p3(L p1 U L p2)* . .

.L+
 ps-1 (L p1 U . . . U L ps-2)* L+

 ps (L p1 U . . . U L ps)*, where p1. . .ps is a permutation of {i1, . .

.,is}, and L(K) is taken unions under all permutations of {i1, . . .,is}. Hence L(K) is a regular

language. It is easily verified that A* = Vø≠K ≤{1,2,...,m}rk 1L(K) V 1{ε}. By Theorem 4.1 , it

follows that A*  step(Σ).

Remark 4.1. Recall that a negation on a lattice l is a mapping h from l into l such that,

a 6 b implies h(a) P h(b) and hh(a) = a for any a,b 2 l. Furthermore, if the negation h

also satisfies the conditions: a ^ h(a) = 0 and a _ h(a) = 1 for any a 2 l, then h is called

the complement over l. In this case, l is an orthocompletment lattice. An orthomodular

lattice is an orthocompletment lattice satisfying the orthomodular laws as presented as

follows:

a  b implies a  (h(a) b) = b:

If l is a lattice with a negation h, then for an l-language A : * l, we can define the negation

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 12

of A on l(*) as, h(A)(x) = h(A(x)). Then for any A  lR(*), h(A) is also l-regular. In fact,

if A =⋁𝑖=1
𝑚 h(ki)1* =1, for some ki  l and regular language Li over ,

then h(A) = =⋁𝑖=1
𝑚 h(ki)1* -1,. l*(-L1…..Ln)

Definition 4.1 [19] The language of l-valued regular expressions over alphabet  has the

alphabet (∑∪ {𝜀, ∅}) ∪ (𝑙 ∪ {+, −,∗}). The symbols in ∑∪ {𝜀, ∅} will be used to denote

atomic expressions, and the symbols in 𝑙 ∪ {+, −,∗} will be used to stand for operators for

building up compound expressions: * and all r  l are the unary operators, and +, - are

binary ones. We use α, β to act as meta-symbols for regular expressions and L(α) for the

language denoted by expression α. More explicitly, L(a) will be used to denote an l-valued

subset of ∑*; that is, L(α)  l(∑*). The l-valued regular expressions and the l-valued

languages denoted by them are formally defined as follows:

(i) For each σ ∑, r is a regular expression, and L(σ) = {σ}; 𝜀 and ∅; are regular

 expressions, and L(𝜀) = { 𝜀 }, L(∅) = ∅.

(ii) If both α and β are regular expressions, then for each r  l, rα, α + β, α - β, α* are all

regular expressions, and L(rα) = rL(α), L(α + β) = L(α)  L(β), L(α - β) = L(α)L(β),

L(α*) = L(α)*.

Theorem 4.3 (Kleene Theorem in lattice setting). For an l-valued language A  l(∑*), A

can be recognized by an l-VFA iff there exists an l-valued regular expression a over ∑ such

that A = L(α).

Proof. If A can be recognized by an l-VFA, then by Theorem 4.1, there exist k1, . . .,kn  l -

{0}, and regular languages L1, . . .,Ln such that A = ⋁𝑖=1
𝑛

 ki, li. Since each Li is a regular

language, by classical Kleene Theorem, there exists a regular expression αi over ∑ such that

L(αi) = Li. Let α = k1a1 + ….. + knan, then α is an l-valued regular expression, and L(α) =

⋁𝑖=1
𝑛 kiL(α) = ⋁𝑖=1

𝑛 kili = A

Conversely, assume that there exists an l-valued regular expression α such that A =

L(α). We show that A can be recognized by an l-VFA inductively on the number of

operation symbols occurring in α. If there is no operation symbol in α, then α = σ  ∑, 𝜀 or

∅. In this case, L(α) = {σ}, {𝜀} or ∅, and L(a) can be recognized by a classical DFA. The

classical DFA is evidently an l-VDFA, so L(α) can be recognized by an l-VDFA in this case.

Inductively, since the family of recognizable languages by l-VDFA is closed under union,

intersection, scalar product, concatenation and Kleene closure (by Theorem 4.2), it follows

that L(α) can be recognized by an l-VDFA for any l-valued regular expression α.

Remark 4.2. As a corollary, when l is an orthomodular lattice, Theorem 4.3 is exactly the

Kleene theorem in quantum logic. Therefore, the strictly restrictions on Kleene theorem

under quantum logic as presented in [33] are not necessary. It also shows that Kleene

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 13

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

theorem holds in any lattice-valued finite automata, the distributive law is not necessary to

the validity of Kleene theorem.

5.Minimization of lattice-valued finite automata

Finite automata are used to design complex system. Finding a minimum

representation of finite automata is a critical is sue arising in such design. In this part, we

shall extend the minimal algorithm of deterministic finite automata (DFA) in classical logic

[8] to those of lattice setting. To make the meaning of minimization of an l-VDFA clear, we

first introduce some necessary notions, which are slight modifications of related notions in

[20,23].

Given an l-VDFA A = Q, ∑, 𝛿, q0, F), let Qa = {d*(q0,𝜃) : 𝜃 𝜖 ∑*}. If Q = Qa, then A

is called accessible. The elements of Qa are called accessible states, and the elements of Q -

Qa are called inaccessible elements. Consider 𝛿a = 𝛿|Qa×∑*, the restriction mapping of 𝛿 on

Qa x ∑, and Fa = F|Qa , the restriction mapping on Qa. Then Aa = (Qa ,∑, 𝛿
a , q0 , F

a) is called

the accessible part of A. It can be easily shown that these two l-VDFAs are equivalent, that

is, they accept the same l-language, recA = recAa . And we say that an l-VDFA is accessible

iff A = Aa .

Obviously, 𝒜
 a is constructed from 𝒜 by removing all inaccessible states. Next, we give

some notions necessary to compare two or more l-VDFAs. Given two l-VDFAs 𝒜 = (Q , ∑;

𝛿; q0, F) and ℬ = (P, ∑, 𝜂, p0, E), a homomorphism from 𝒜 to ℬ, denoted 𝜑 : 𝒜→ ℬ, is a

mapping 𝜑 : Q → P such that 𝜑 (𝛿(q,σ)) = 𝜂(𝜑(q),σ), 𝜑(q0) = p0 and E(𝜑(q)) ≤ F(q) for any

q  Q and σ  ∑. It can be easily deduced that 𝜑(𝛿*(q,𝜃)) = 𝜂*(𝜑(q),𝜃) for any 𝜃  ∑*.

Furthermore, if E(p) = ⋁{F(q) : 𝜑(q) = p}, then 𝜑 is called a strong homomorphism. A

strong homomorphism : 𝒜 → ℬ is called an isomorphism if u is one-to-one and onto.

Lemma 5.1. For two l-VDFAs 𝒜 and ℬ, a homomorphism 𝜑 : 𝒜 → ℬ is an isomorphism

iff there is another homomorphism 𝜓 : ℬ → 𝒜 such that 𝜑 ° 𝜓 = 1ℬ and 𝜓 ° 𝜑 = 1𝒜 .

Proof. ‘‘If part’’: In this case, 𝜑 is a bijection, i.e., 𝜑 is one-to-one and onto. What is left is

to show that 𝜑 is a strong homomorphism. In fact, for any q  Q, E(𝜑 (q)) ≤ F(q) = F(𝜓 𝜑

(q)) ≤ E(𝜑(q)), thus E(𝜑 (q)) = F(q)‘‘Only if part’’: Since 𝜑 is an isomorphism,

𝜑 is a bijection from Q to P, then there exists an inverse of 𝜑, which is denoted as 𝜓 :P →

Q; we show that 𝜓 is also a homomorphism. First, since 𝜑 (q0) = p0, 𝜓 (p0) = q0. Second, if

𝜓 (p) = q, then 𝜑 (𝛿 *(q,𝜃)) = 𝜂*(𝜑 (q), 𝜃) = 𝜂*(p, 𝜃), thus 𝜓 (𝜂*(p, 𝜃)) = 𝛿 *(q, 𝜃) = 𝛿

*(𝜓 (p), 𝜃). Finally, since 𝜑 is strong and bijection, E(p) = F(𝜓 (p)).

Lemma 5.2. If : 𝒜 ! B is a homomorphism between two l-VDFAs, then 𝑟𝑒𝑐ℬ
≤ 𝑟𝑒𝑐𝒜 i.e.,

 𝑟𝑒𝑐ℬ
(𝜃) ≤ 𝑟𝑒𝑐𝒜(𝜃) for any 𝜃  ∑*. Furthermore, if 𝜑 is strong, then 𝑟𝑒𝑐𝒜 = 𝑟𝑒𝑐ℬ

. Proof. For any 𝜃  ∑* , 𝑟𝑒𝑐ℬ
(𝜃) = 𝐸(𝜂*(𝜑(p0),𝜃)) ; 𝐸(𝜂*(𝜑(q0),𝜃)) = 𝐸(𝜑(𝛿*(q0,𝜃)) ≤

F((𝛿*(q0,𝜃)) = 𝑟𝑒𝑐𝒜
(𝜃) that is 𝑟𝑒𝑐ℬ

≤ 𝑟𝑒𝑐𝒜 . If 𝜑 is strong, then 𝑟𝑒𝑐ℬ
(𝜃) = 𝐸(𝜂*(p0),𝜃))

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 14

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

= 𝐸(𝜂*(𝜑(q0),𝜃)) = 𝐸(𝜑(𝛿*(q0,𝜃)) = ⋁(𝐹(𝑞): 𝜑(𝑞) = 𝜑(𝛿*(q0,𝜃) ≥ 𝐹(𝛿*(q0,𝜃) = 𝑟𝑒𝑐𝒜(𝜃),

that is , 𝑟𝑒𝑐ℬ
≥ 𝑟𝑒𝑐𝒜 , thus 𝑟𝑒𝑐ℬ

= 𝑟𝑒𝑐𝒜 .

For two equivalent l-VDFAs 𝒜 and B, given a homomorphism u : 𝒜 → ℬ, and

consider the restriction of 𝜑 on Aa . For any q  Qa, there exists 𝜃  ∑* such that q =

𝛿*(q0, 𝜃), in this case, 𝜑 (q) = 𝜑 (𝛿*(q0, 𝜃)) = 𝜂*(p0, 𝜃). Let p = 𝜂*(p0, 𝜃), then p  Pa.

This demonstrates that the restriction of 𝜑 on Aa is just the homomorphism 𝜑
a : Aa → Ba .

Furthermore, we show that 𝜑
a is also strong and surjective. For any p  Pa, there is 𝜃  ∑*

such that p = 𝜂*(p0, 𝜃). We select q = 𝛿 *(q0, 𝜃). Then q  Qa and 𝜑
a(q) = p, thus 𝜑

a is

surjective. Since 𝜑
a is surjective and 𝐹(𝛿*(q0,𝜃) = 𝑟𝑒𝑐𝒜

(𝜃) = 𝑟𝑒𝑐ℬ
(𝜃) = 𝐸(𝜂*(q0),𝜃))

= 𝐸(𝜑(𝛿*(q0,𝜃)) , 𝜑𝑎is also a strong homomorphism. We thus obtain the following results.

REFERENCES

[1] Y.M. Li, W. Pedrycz, Minimization of lattice finite automata and its application to

the decomposition of lattice languages, Fuzzy Sets and Systems 158 (2007)1423-

1436.

[2] P. Li, Y.M. Li, Algebraic properties of LA-languages, Information Sciences 176

(2006) 3232-3255.

[3] Z.H. Li, P. Li, Y.M. Li, The relationships among several types of fuzzy automata,

Information Sciences 176 (2006) 2208-2226.

[4] J.N. Mordeson, D.S. Malik, Fuzzy Automata and Languages: Theory and

Applications, Chapman & Hall/CRC, Boca Raton, London, 2002.

[5] D.W. Qiu, Automata theory based on complete residuated lattice-valued logic,

Science in China Series F 44 (6) (2001) 419-429.

[6] D.W. Qiu, Automata theory based on complete residuated lattice-valued logic

(II), Science in China Series F 45 (6) (2002) 442-452.

[7] D.W. Qiu, Pumping lemma in automata theory based on complete residuated

lattice-valued logic, Fuzzy Sets and Systems 157 (2006) 2128-2138.

[8] D.W. Qiu, Automata theory based on quantum logic: reversibilities and

pushdown automata, Theoretical Computer Science 386 (2007) 38-56.

 [9] D.W. Qiu, Automata theory based on quantum logic: some characterizations,

Information and Computation 190 (2007) 179-195.

[10] D.W. Qiu, Notes on automata theory based on quantum logic, Science in China

Series F: Information Sciences 50 (2) (2007) 154-169.

[11] M.O. Rabin, D. Scott, Finite automata and their decision problems, IBM Journal

of Research and Development 3 (1959) 114-125.

[12] M.P. Schützenberger, On the definition of a family of automata, Information and

Control 4 (1961) 245-270.

[13] W. Wechler, The Concept of Fuzzyiness in Automata and Language Theory,

Akademie-Verlag, Berlin, 1978.

[14] M.S. Ying, A theory of computation based on quantum logic (I), Theoretical

Computer Science 344 (2005) 134-207.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-11 | November, 2016 | Paper-2 15

