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Abstract 

Linear passive control is used to study and description the vibration of the ultrasonic 

machining (USM) non-linear dynamical system is consists of tuned and external force .The 

system is represented by a two-degree-of-freedom (2DOF).The method of multiple scales 

perturbation technique (MSPT) is applied to obtain approximate solution. The vibration is 

studded numerically on the system with and without control .The stability at the worst resonance 

cases ( 1 1 = , 1 2 = , 1 2 1 2, 2    = , 2 1 3 =  , 2 2 3 =  ) is obtained using both 

phase plane methods and frequency response of resonance case. Effects of different parameters 

on the system behavior are studied numerically by using MATLAB program. Finally, a 

comparison of previously published work is done. 

 
Keywords: Stability, Frequency response, Multiple times scale, Vibration control, tuned force, 

excitation, Passive control. 

 
1 Introduction  

Passive control was applied to reduce the vibration of the (USM) applying nonlinear 

absorber (tool) (which represents many applications in machine tools, ultrasonic cutting process). 

The advantages of using absorber (passive control), which leads to time saving and higher 

machining efficiency. And the use of active feedback control strategy is a common way to 

stabilize and control dangerous vibrations in vibrating systems and structures, such as bridges, 

highways, buildings, space and aircrafts 

Hamed et al [1] introduced a mathematical and numerical study on controlling the 

nonlinear response of vibrational vertical conveyor under mixed excitation.  By studying the 

vibrating motion of vertical vibration conveyor, we wrote the equations of motion as a coupling 

of non-linear differential equations. Multiple scale perturbation method is applied to study the 

approximate mathematical solutions up to the second order approximation and we studied the 

stability of the steady state solution mathematically at the worst different resonance cases using 

frequency response equations. Alısverisci [2] study the transitional behavior across resonance, 

during the starting of a single degree of freedom vibratory system excited by crank and-rod. A 

loaded vibratory conveyor is safer to start than an empty one. Shaking conveyers with cubic 

nonlinear spring and ideal vibration exciter have been analyzed analytically for primary 

resonance by the Method of Multiple Scales, and numerically. The approximate analytical results 

obtained in this study have been compared with the numerical results, and have been found to be 

well matched. 

 Yuejing Zhao et al [3] conducted the configuration and force analysis of vertical 

vibratory conveyor. The model of system with considering the friction between the materials and 

the spiral conveying trough is developed. The numerical simulations are done and the dynamical 

responses curves are given. Suitable configuration parameters of vertical vibratory conveyor and 

parameters of materials can make it work normally. Hüseyin Bayıroğlu [4] analyzed the 
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nonlinear analysis of unbalanced mass of vertical conveyor with non-ideal DC motor. The results 

of numerical simulation are plotted and Lyapunov exponents are calculated. El-Sayed and 

Bauomy [5] used the two positive position feedback controllers (PPF) are used to reduce the 

vertical vibration in the vertical conveyors. An investigation is presented of the response of a 

four degree-of-freedom system (4-DOF) with cubic nonlinearities and external excitations at 

primary resonance. Hamed et al. [6] investigated the nonlinear vibrations and stability of the 

MEMS gyroscope subjected to different types of parametric excitations. The averaging method 

is applied to obtain the frequency response equations for the case of sub-harmonic resonance in 

the presence of 1:1 internal resonances. The stability of the system is investigated with frequency 

response curves and phase-plane method.  

Sayed et al [7] find analytical and numerical study to investigate the vibration and 

stability of the Van der Pol equation subjected to external and parametric excitation forces via 

feedback control. The stability of the system is investigated applying Lyapunov first method. 

The stability of the system is investigated applying Lyapunov first method. Gulyayev and 

Tolbatov [8] and Dai and Dong [9].They wanted to prove that Active control is now 

commercially available for reducing vibrations offering better comfort with less weight than 

traditional passive technologies. The Van der Pol equation is of great interest because it can 

serves as a basic model for self-excited oscillations in many disciplines. Warminski et al. [10] 

discussed active suppression of nonlinear composite beam vibrations by selected control 

algorithms. Wang et al. [11] presented theoretical and experimental study of active vibration 

control of a flexible cantilever beam using piezoelectric actuators.  

El-Ganaini et al. [12] applied positive position feedback active controller to reduce the 

vibration of a nonlinear system. They found that the analytical and numerical solutions are in 

good agreement. Eissa et al. [13] applied a proportional-derivative controller to the nonlinear 

magnetic levitation system subjected to external and parametric excitations. They studied the 

effects of proportional and derivative gains to give the best performance for the system. El-

Ganaini [14]. Investigates the vibration control of a harmonically excited Duffing oscillator via a 

simple pendulum. The amplitude-phase modulating equations governing the system dynamics 

are extracted utilizing perturbation methods. Bifurcation analyses are conducted and the 

Lyapunov direct method is applied to study the system stability. The uncontrolled system 

exhibits a variety of nonlinear phenomena such as jump phenomenon, saddle-node, and trans 

critical bifurcations. Warminski et al. [15] studied vibration analysis of an autoparametric 

pendulum-like mechanism subjected to harmonic excitation. They proposed a suspension 

composed of a semi-active MR damper and a nonlinear spring. Kecik [16] studied the nonlinear 

oscillations of autoparametric system consists of a nonlinear oscillator attached to pendulum 

system.  

Tusset et al. [17] studied the chaotic behaviors control of parametrically excited 

pendulum using two different control strategies. One of this applied control method is via the 

active nonlinear saturation controller, and the other via introducing a passive rotational MR 

damper. Hamed et al [18] investigated the effects of an active vibration control on a nonlinear 

two-degree-of-freedom system described by a nonlinear differential equations subjected to mixed 

excitation forces. The method of multiple scale perturbation technique is applied to determine the 

approximate solutions of the coupled nonlinear differential equations up to the second order 

approximation. The frequency response equations and phase plane technique at the worst 

resonance cases are used to study the stability of the vibrating system. Yabuno et al. [19] 

proposed a non-linear active cancellation method to stabilize the principal parametric resonance 
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in a magnetically levitated body subjected to an unsymmetrical restoring force. Jun et al. [20], 

introduced the non-linear saturation-based control strategy for the suppression of the self-excited 

vibration of a van der Pol oscillator. It is demonstrated that the saturation-based control method 

is effective in reducing the vibration response of the self-excited plant when the absorber’s 

frequency is exactly tuned to one-half the natural frequency of the plant. Jun et al [21], studied 

An active non-linear vibration absorber for suppressing the high amplitude vibration of the non-

linear plant when subjected to primary external. The absorber is based on the saturation 

phenomenon associated with the dynamical systems with quadratic non-linearities and 2:1 

internal resonance. 

 Hamed et al. [22] investigated the nonlinear vibrations, energy transfer and stability of 

the MEMS gyroscope system under multi-parametric excitations. Also, they obtained the 

frequency response equations using the averaging method. Abdelhafez and Nassar [23]. They 

studied Loop delays and They took into consideration at ion when positive position feedback 

controller is used to control the vibrations of forced and self-excited nonlinear beam. External 

excitation is a harmonic excitation caused by support motion of the cantilever beam. Self-

excitation is caused by fluid flow and modeled by a nonlinear damping with a negative linear part 

(Rayleigh’s function). Gao and Chen [24] have been studied extensively the vibration control of 

many systems with the time delay by using different controllers. An active linear absorber based 

on positive position feedback control strategy has been developed and applied to suppress the 

high-amplitude response of a flexible beam subjected to a primary external excitation. Shin et al 

[25]. They achieved control of the active vibrations in the clamps using the control unit in the 

positive feedback of the position with the torque sensor pair operator. Yingli et al [26] studied 

Dynamic effects of delayed feedback control on nonlinear vibration floating raft systems. 

  Gao, and Chen [27] studied Nonlinear analysis, design and vibration isolation for a 

bilinear system with    time-delayed cubic velocity feedback. Abdelhafez and Nassar [28] 

presented a quantitative analysis on the nonlinear behavior of a forced and self-excited beam 

coupled with a positive position feedback controller PPF. Such that the external excitation is a 

harmonic motion on the support of the cantilever beam. Self-excitation is caused by fluid flow 

and modeled by a nonlinear damping with a negative linear part (Rayleigh’s function). Self-

excitation can build up oscillations even in the absence of external forces. Also self-excitation 

can interact with the external excitation and lead system to vibrate with a quasi-periodic motion 

and to be unstable. This problem is treated here by using PPF controller. Jun et al. [29] applied a 

nonlinear saturation controller NSC with van der Pol oscillator and additionally investigated the 

influence of feedback gains by using perturbation and direct numerical integration solutions. 

Ouakad et al [30], the behavior of a micro beam is improved by using a nonlinear feedback 

controller. Also authors presented a novel control design that regulates the pass band of the 

considered micro beam.  

Jian et al [31] improved a nonlinear saturation controller and utilized it to reduce high-

amplitude vibrations of a flexible, geometrically nonlinear beam-like structure.  In this article we 

study effect of passive control  on the system and ability  to control  on vibration .The method of 

multiple time scales is perturbation technique is applied to obtain the periodic response equation 

near the selected resonance case. Yan et al. [32] they have verified the possibility of a vehicle 

suspension system under time delayed the optimal control. Showed how to effect of time delay 

on control stability of the action on the system. Have used the mathematical simulation to verify 

the rightness of the stable interval obtained by differential equation theory for linear systems 

with constant coefficients and time delay. 
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Di Ferdinando and Pepe. [33] they discussed the problems of the stabilization in the 

sample-and-hold sense by simulation of continuous-time dynamic produce feedback controllers, 

so They studied the time delay of the nonlinear systems and appropriate conditions are provided 

such that the simulation of continuous-time dynamic output feedback controller. In this paper the 

(MSPT) is applied to obtain approximate solution. Studying the vibration numerically on the 

system with and without control, and we discuss the effect of resonance cases resulting from 

different force. 

2. Mathematical modeling 
The non-linear dynamical system is consists of parametric and external force .The system 

is represented by a two-degree-of-freedom (2dof) differential equations represented by the main 

system and absorber. From the principles of the mechanics the derived equation of motion can be 

written the forms Eqs (1) and (2) as shown in [34]. 

                              

 

 

 

 

 

 

 

 

 

 

                                                  Figure1 Schematic graph of ultrasonic machine   

 
where 

1m  and 
2m  are the mass of the main system and the absorber. 1c and

2c  are damping 

coefficients of the main system and the absorber. 21,k k and 
3k  are stiffness of the main system 

and the absorber. F  is excitation amplitude of tuned and external force.  
 

2 2

1 1 1 1 1 2 3 1 4 1 2 5 1 2 1 1( ) ( ) ( ) cosx x x x x x x x x f t     + + − + + − + − = 

2 2 3cos sinf t t+                                                                                                                       (1) 

2 2

2 2 2 1 2 2 1 6 1 2( ) ( ) ( ) 0x x x x x x x  + − + − − − =                                                                  (2) 

where 1x , 2x   are the displacements of the linear oscillators and nonlinear energy sink 

(NES),
1x 2x  derivatives of 1x , 2x , ( 1 , 3 ) are the damping coefficient, ԑ if  (i=1, 2) are the 

amplitudes of excitation of each linear oscillator, ԑ is a small parameter and 
7 8, ,    are defined 

in appendix , 1 , 2 are natural frequencies, 
1 2 3, ,    are forcing frequency . Let 

1u x= and 

2 1v x x= − then, equations (1) and (2) can be written as:
 

 
2 2

1 1 3 4 5 1 1 2 2 3cos cos sinu u v u v v f t f t t      + − + − + =  +  
               (3) 
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( )2 2 2

2 1 3 4 7 8 1 1 2 2 3cos cos sinv v u u v v v f t f t t        + + − − + + − = −  −                    (4) 
 
 

2.1 Perturbation analysis 

 
Eqs (3) and (4) can be solved analytically using multiple time scale perturbation 

technique as:       

 
2

0 1 0 0 1 1 0 1 2 0 1( , ) ( , ) ( , ) ( , ) ...u T T u T T u T T u T T = + + +                                                         (5)         

2

0 1 0 0 1 1 0 1 2 0 1( , ) ( , ) ( , ) ( , ) ...v T T v T T v T T v T T = + + +                                                          (6) 

 

where 0T =t is fast time scale, which is associated with changes occurring at the frequencies,
 

1 , 2 3,  .and 1T = ԑt is the slow time scale, which is associated with modulations in the 

amplitudes and phases resulting from the non-linearity’s and parametric resonance. In term of 

0T and 1T the time derivatives became    

0 1 2

2 ...
d

D D D
dt

 = + + +
                                                                                                                   (7)

 

2
2

2 2

0 0 12 01 22 2 ) .( ..
d

D D D D D
t

D
d

 = + + + +
                                                                                        (8) 

Where nD  differential operators; nD =
nT




  (n=0, 1). Substituting Eqs (5) and (6) into Eqs (3) 

and (4) and equation the coefficients of same power of ԑ in both sides, we obtain:
 

Order ( 0 ): 
2 2

0 1 0( ) 0D u+ =
                                                                                                          (9)      

                        
2 2

0 2 0( ) 0D v+ =                                                                                                         (10) 

Order ( 1 ): 
2 2

0 1 1 1 1 2 2 3 0 1 0 3 0 0 4 0( ) cos cos sin 2D u f t f t t D D u D u v  + =  +   − − +   

2

1 0 0 5 0D v v + −                                                                                                                               (11) 

2 2 2

0 2 1 0 1 0 1 0 3 0 0 4 0 7 0 0 8 0( ) 2D v D D v u D u v D v v     + = − + + − − +                                    

1 1 2 2 3cos cos sinf t f t t−  −                                                                                                      (12)                      

The general solution of Eqs (9) and (10) can be expressed in the form: 

 
1 0

0 0 1 0( , )
i T

u T T A e cc


= +                                                                                                                  (13)  

2 0

0 0 1 0( , )
i T

v T T B e cc


= +                                                                                                             (14) 
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where 0A and 0B are unknown function in 1T , which can be determined by imposing the 

solvability condition at the next approximation order by eliminating the secular and small- 

divisor terms. 

 

Substituting Eqs (13) and (14) into Eqs (11)and (12) we   get:  

1 0 2 3 0 2 3 0 1 01 ( ) ( )2 2 1 2
0 1 1 1 1 0( ) ( ) ( ) 2

2 4

i T i T i T i Ti Tf if
D u e e e e i D A e

   +  −− + = + − − −  

                    
1 0 2 0 2 0 2 022

3 1 0 4 0 2 1 0 5 0

i T i T i T i T
i A e B e i B e B e

        − + + −
                                   

(15)

     

1 0 2 3 0 2 3 0 2 01 ( ) ( )2 2 1 2
0 2 1 2 1 0( ) ( ) ( ) 2

2 4

i T i T i T i Ti Tf if
D v e e e e i D B e

   +  −− + = − + + − −    

                  
1 0 2 0 1 0 2 0 2 02

1 0 4 0 1 3 0 8 0 2 7 0

i T i T i T i T i T
i A e B e i A e B e i B e

         + − + + −  

         
(16)              

Eliminating the secular terms, the general solution of Eqs (15) and (16) are given by: 

1 0 2 0 2 0 1 0 2 3 0 2 3 02 ( ) ( )

1 0 1 1 1 2 3 4 5( , )
i T i T i T i T i T i T

u T T Ae e e e e e
     +  −

= + + + + +       (17) 
2 0 1 0 1 0 2 3 0 2 3 0( ) ( )

1 0 1 1 6 7 8 9( , )
i T i T i T i T i T

v T T B e e e e e
    +  −

= + + + +
                      (18) 

where ( i , i=1…8) and 1A , 1B  are complex   function in 1T
,
 and cc is complex conjugate of the 

preceding terms. 

From the analytic solution the possible resonance cases are :  

(1) Primary resonance ( )1 1 = ( )1 2 =  

(2) Internal resonance ( )1 2   

(3) Combined resonance ( )2 1 3 =  ( )2 2 3 =   

(4) Simultaneous resonance ( ) ( ) ( )1 2 1 1 2 1 3, ,   =  =  =  . 

Then deduce the worst ones, two of the worst cases have been chosen to study the system 

stability, and compare the effect of absorber on these cases. The selected resonance cases are 

( ) ( ) ( )1 2 1 1 2 1 3, ,   =  =  =   

3. First Primary and Internal resonance 

Simultaneous resonance ( ) ( )1 2 1 1,  =  = .In this case we introduce the detuning 

parameter 1 2,   according to:   

1 1 1  = +                                                                                                                                       (19) 

2 1 2  = +                                                                                                                                      (20) 

where ( )1,2  i i = is the detuning parameter .Also  for  stability  investigation, the analysis  is   

limited   to  the  first  approximation . So, our solution is only dependent     on    0T    and   1T .       

Substituting Eqs (19) and (20)   into   Eqs. (15) and (16) and eliminating the secular terms leads 

to the solvability conditions 
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2 1 2 1 1 11
1 1 0 1 3 0 4 0 2 0 1( 2 D ) 0

2

i T i T i Tf
i A i A B e i B e e      − − + + + =                               (21)

 
2 1 2 12

2 1 0 4 0 2 0 7 8 0 1 0 1 3 0( 2 ) 0i T i Ti D B B i B B A e i A e       − −− − − + + + =                      

(22)

                                                                                                                                  

 

To analyze the solution of Eqs (21) and (22), it is convenient to express A in the polar form as: 

      1 1( )
0 1 1

1
( )

2

i TA a T e =                                                                                                                (23) 

     

2 1( )
0 2 1

1
( )

2

i TB a T e =                                                                                                                            (24) 

where  ( 1,2), ( 1,2)i ia i i= =  are unknown real-valued function .Inserting equation (23) and (24) 

into Eqs (21)and (22) Let 2 1 1 2 2 1 1 1 1( ),( )T T      − + = − =   and separating the real and 

imaginary parts we have the following: 

 

31 4 2 1
1 1 1 2 2 2 2

1 1 1

sin sin cos
2 2 2 2

f
a a a a

   
  

  
 = − + +                                                            (25)                        

1 4 2 1
1 1 1 2 2 2 2

1 1 1

cos cos sin
2 2 2

f
a a a

  
   

  
 = − − +                                                                 (26) 

2
1 34 1

2 2 1 2 1 2

2 2

sin cos
2 2

a a a a
 

 
 

 = − − +                                                                            (27) 

( ) 2
4 8 1 31

2 2 2 1 2 1 2

2 2 2

cos sin
2 2

a a a a
  

  
  

−
 = − −                                                                 (28)                                                                                    

For  steady  solutions 0, 0i ia  = =  and the  periodic solution at  the  fixed  points  

corresponding  to Eqs (25)-(28) is  given by: 

 

31 4 2 1
1 1 2 2 2 2

1 1 1

sin sin cos
2 2 2 2

f
a a a

   
  

  
= + +                                                                   (29) 

1 4 2 1
1 1 1 2 2 2 2

1 1 1

cos cos sin
2 2 2

f
a a a

  
   

  
= − − +                                                                (30) 

4 2
2

3 1

sin
M a

M a


 
=  
 

                                                                                                                       (31) 

4 2 2 1 4 2
2

1 3 1 3 3 1

2
cos

a M a

a M a

  


 

 
= +  

 
                                                                                          (32) 

From Eqs (29)-(32) we get the corresponding frequency response equation (FRE) is: 
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(
2

2 2 2 2 2 2 2
3 4 4 2 2 1 2 2 1 4 2 2 1 4 2 2 4 2

1 1 12 2 2 2
1 3 1 1 3 3 1 1 3 1 11 3 1 3

2 2 22 2

M a a M a M a a
a a

M a a M a M a a

          


     

 
− − − + − + − 

                                                                                                 

   

2
2

24 4 2 1

3 3 1 1

( ) 0
2

M a f

M a

 

 


− − =

                                                                                                        

(33) 

2
2 22
1 22

1

M
a a

M
=                                                                                                                                (34) 

where ( )1,2,3,4iM i =  are defined in appendix 

3.1.1 Linear solution 
To study the stability of the linear solution of the obtained fixed points, let us consider A 

and B in the forms: 

1 1

0 1 1 1

1
( ) ( )

2

i TA T p iq e = −                                                                                                        (35) 

2 1

0 1 2 2

1
( ) ( )

2

i TB T p iq e = −                                                                                                               (36) 

where 1 1 2 2, ,p q p and q  are real values and considering 1 1 2 1 2,    = = − . 

Substituting from Eqs (35) and (36) into the linear parts of Eqs (21) and (22) and separating real 

and imaginary parts, the following system of equations are obtained: 

( ) 2 1 4
1 3 1 1 1 2 2

1 1

1

2 2
p p q p q

  
 

 

    
 = − − + − + + −    

     
                                                                             (37) 

( ) 4 2 1 1
1 1 1 3 1 2 2

1 1

1

2 2 2

f
q p q p q

  
 

  

    
 = − + + +    

    
                                                                                (38) 

2

1 3 4 81 4
2 1 1 2 2 2

2 2 2

( )

2 2 2 2
p p p p q

   


  

     − 
 = + − + − + − +      

      
                                                               (39) 

2

1 3 8 41 4
2 1 1 2 2 2

2 2 2

( )

2 2 2 2
q p q p q

   


  

     −  
 = + + + + −       

      
                                                     (40)    

The above equations can be written in a matrix form as: 

2 1 4
3 1

11 1 1

4 2 1
1 31 1

1

2
2 1 3 4 81 4 2

2

2 2 2

2 2 2
1 3 8 41 4

2

2 2 2

1

2 2

1

2 2

( )

2 2 2 2

( )

2 2 2 2

pp

q q

p p

q q

  
 

 

  
 

 

   


  

   


  

 
− − −    
    
     −    
     =      − 

− − − +     
           −     + −    




                 (41) 

The stability of the linear solution in this case is obtained from the zero characteristic equation 
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2 1 4
3 1

1 1

4 2 1
1 3

1

2

1 3 4 81 4
2

2 2 2

2

1 3 8 41 4
2

2 2 2

1

2 2

1

2 2
0

( )

2 2 2 2

( )

2 2 2 2

  
  

 

  
  

 

   
 

  

   
 

  

 
− − − − 
 

 
− − 
 

=
 − 

− − − − +  
   

 −  
+ − −   

  

                           (42) 

After extract we obtain that: 
      

4 3 2

1 2 3 4 0r r r r   + + + + =                                                             (43) 

where  and  are defined in Appendix. 

According to Routh-Huriwitz criterion, the above linear solution is stable if the following 

inequalities are satisfied: 
2

1 1 2 3 3 1 2 3 1 4 40, 0, ( ) 0, 0r r r r r r r r r r r −  − −                                

3.1.2Non-linear solution 
To determine the stability of the fixed points, one lets 

( )0 1 0 1( 1,2), 1,2n n n m m mna a a m  = + = + ==                                                                       (44) 

Where   and  are solutions of Eqs (29) - (33) and 11 21 m1a , ,a   are perturbations which 

are assumed to be small compared to 10 20a ,a  and m0 . Substituting Eq (44) into Eqs (25)-(28) 

using Eqs (29) - (32) and keeping only the linear terms, we obtain: 

3 1 2 1 4
11 11 10 11 20 20 21

1 1 1

cos cos sin
2 2 2 2

f
a a a

   
   

  

    
 = − + + +    

     
                                                                                                                                                                       

2 1 4
20 20 20 20 21

1 1

sin cos
2 2

a a
  

  
 

 
+ − + 
 

                                                                                    (45) 

1 1 2 1 4
11 11 10 11 20 20 21

10 1 10 1 10 1 10

sin sin cos
2 2 2

f
a a

a a a a

   
    

  

     
 = − − + − +     

     
                                                                    

2 1 20 4 20
20 20 21

1 10 1 10

cos sin
2 2

a a

a a

  
  

 

 
+ − − 
 

                                                                                     (46) 

22
1 3 1 10 1 3 101 4

21 20 20 11 21 20 20 21

2 2 2 2

sin cos cos sin
2 2 2

a a
a a a

     
    

   

    
 = − + + − + − −    

    

              (47)                    

( ) ( )2
4 81 21 31 1 1

21 20 20 11 10 11

2 20 2 20 10 1 10 2 20

cos sin sin
2 2 2 2

f
a

a a a a a

    
    

   

   −− 
 = − − + + − + − +   

   

                                  

2
1 10 1 3 10 2 1 20 4 204 2 1

20 20 21 20 20 20 20 21

1 10 1 10 2 20 2 20 1 10 1 10

cos sin sin cos cos sin
2 2 2 2 2

a a a a
a

a a a a a a

       
      

     

 
+ − + − − − − 

  

                                                                                                                                                     (48) 
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3.2 Second combined and internal resonance  

Simultaneous resonance ( ) ( )1 2 2 1 3,  =  = + .In this case we introduce the detuning 

parameter 1 2,   according to:   

1 1 3 1  = + +                                                                                                                           (49) 

2 1 2  = +                                                                                                                                      (50) 

where ( )1,2  i i = is the detuning parameter .Also  for  stability  investigation, the analysis  is   

limited   to  the  first  approximation . So, our solution is only dependent     on    0T    and   1T .       

Substituting Eqs (49) and (50)   into Eqs. (15) and (16) and eliminating the secular terms leads to 

the solvability conditions 

2 1 2 1 1 12
1 1 0 1 3 0 4 0 2 0 1( 2 D ) 0

4

i T i T i Tif
i A i A B e i B e e      − − + + + =                               (51)

 
2 1 2 12

2 1 0 4 0 2 0 7 8 0 1 0 1 3 0( 2 ) 0i T i Ti D B B i B B A e i A e       − −− − − + + + =                      

(52)

                                                                                                                                  

 

To analyze the solution of Eqs (51) and (52), it is convenient to express A in the polar form as: 

 

      1 1( )
0 1 1

1
( )

2

i TA a T e =                                                                                                                (53) 

     

2 1( )
0 2 1

1
( )

2

i TB a T e =                                                                                                                          (54) 

where  ( 1,2), ( 1,2)i ia i i= =  are unknown real-valued function .Inserting equation (53) and (54) 

into Eqs (51)and (52) Let 2 1 1 2 2 1 1 1 1( ),( )T T      − + = − =   and separating the real and 

imaginary parts we have the following: 

 

32 4 2 1
1 1 1 2 2 2 2

1 1 1

cos sin cos
4 2 2 2

f
a a a a

   
  

  
 = − + +                                                            (55)                        

2 4 2 1
1 1 1 2 2 2 2

1 1 1

sin cos sin
4 2 2

f
a a a

  
   

  
 = − +                                                                     (56) 

2
1 34 1

2 2 1 2 1 2

2 2

sin cos
2 2

a a a a
 

 
 

 = − − +                                                                            (57) 

( ) 2
4 8 1 31

2 2 2 1 2 1 2

2 2 2

cos sin
2 2

a a a a
  

  
  

−
 = − −                                                                 (58)                                                                                    

For  steady  solutions 0, 0i ia  = =  and the  periodic solution at  the  fixed  points  

corresponding  to Eqs (55)-(58) is  given by: 

 

32 4 2 1
1 1 2 2 2 2

1 1 1

cos sin cos
4 2 2 2

f
a a a

   
  

  
= − −                                                                   (59) 
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2 4 2 1
1 1 1 2 2 2 2

1 1 1

cos cos sin
4 2 2

f
a a a

  
   

  
= − +                                                                   (60) 

4 2
2

3 1

sin
M a

M a


 
=  
 

                                                                                                                       (61) 

4 2 2 1 4 2
2

1 3 1 3 3 1

2
cos

a M a

a M a

  


 

 
= +  

 
                                                                                          (62) 

From Eqs (59)-(62) we get the corresponding frequency response equation (FRE) is: 

(
2

2 2 2 2 2 2 2
3 4 4 2 2 1 2 2 1 4 2 2 1 4 2 2 4 2

1 1 12 2 2 2
1 3 1 1 3 3 1 1 3 1 11 3 1 3

2 2 22 2

M a a M a M a a
a a

M a a M a M a a

          


     

 
− − − + − + 

                                                                                                 

   

2
2

24 4 2 2

3 3 1 1

( ) 0
4

M a f

M a

 

 


+ − =

                                                                                                        

(63) 

2
2 22
1 22

1

M
a a

M
=                                                                                                                                (64) 

where ( )1,2,3,4iM i =  are defined in appendix 

3.2.1 Linear solution 
To study the stability of the linear solution of the obtained fixed points, let us consider A 

and B in the forms: 

1 1

0 1 1 1

1
( ) ( )

2

i TA T p iq e = −                                                                                                        (65) 

2 1

0 1 2 2

1
( ) ( )

2

i TB T p iq e = −                                                                                                                (66) 

where 1 1 2 2, ,p q p and q  are real values and considering 1 1 2 1 2,    = = − . 

Substituting from Eqs (65) and (66) into the linear parts of Eqs (51) and (52) and separating real 

and imaginary parts, the following system of equations are obtained: 

( ) 2 1 4 2
1 3 1 1 1 2 2

1 1 2

1

2 2 4

f
p p q p q

  
 

  

    
 = − − + − + + − +    

     
                                                                        (67) 

( ) 4 2 1
1 1 1 3 1 2 2

1

1

2 2
q p q p q

  
 

 

    
 = − + +    

    
                                                                                            (68) 

2

1 3 4 81 4
2 1 1 2 2 2

2 2 2

( )

2 2 2 2
p p p p q

   


  

     − 
 = + − + − + − +      

      
                                                               (69) 

2

1 3 8 41 4
2 1 1 2 2 2

2 2 2

( )

2 2 2 2
q p q p q

   


  

     −  
 = + + + + −       

      
                                                     (70)    

The above equations can be written in a matrix form as: 
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2 1 4
3 1

11 1 1

4 2 1
1 31 1

1

2
2 1 3 4 81 4 2

2

2 2 2

2 2 2
1 3 8 41 4

2

2 2 2

1

2 2

1

2 2

( )

2 2 2 2

( )

2 2 2 2

pp

q q

p p

q q

  
 

 

  
 

 

   


  

   


  

 
− − −    
    
     −    
     =      − 

− − − +     
           −     + −    




                 (71) 

The stability of the linear solution in this case is obtained from the zero characteristic equation 
2 1 4

3 1

1 1

4 2 1
1 3

1

2

1 3 4 81 4
2

2 2 2

2

1 3 8 41 4
2

2 2 2

1

2 2

1

2 2
0

( )

2 2 2 2

( )

2 2 2 2

  
  

 

  
  

 

   
 

  

   
 

  

 
− − − − 
 

 
− − 
 

=
 − 

− − − − +  
   

 −  
+ − −   

  

                           (72) 

After extract we obtain that: 
      

4 3 2

1 2 3 4 0r r r r   + + + + =                                                             (73) 

where  and  are defined in Appendix. 

According to Routh-Huriwitz criterion, the above linear solution is stable if the following 

inequalities are satisfied: 
2

1 1 2 3 3 1 2 3 1 4 40, 0, ( ) 0, 0r r r r r r r r r r r −  − −                                

 3.2.2 Non-linear solution 
To determine the stability of the fixed points, one lets 

( )0 1 0 1( 1,2), 1,2n n n m m mna a a m  = + = + ==                                                                      (74) 

Where   and  are solutions of Eqs (59) - (62) and 11 21 m1a , ,a   are perturbations which 

are assumed to be small compared to 10 20a ,a  and m0 . Substituting Eq (48) into Eqs (55)-(58) 

using Eqs (59)- (62) and keeping only the linear terms, we obtain: 

3 2 2 1 4
11 11 10 11 20 20 21

1 1 1

sin cos sin
2 4 2 2

f
a a a

   
   

  

    
 = − + − + +    

     
                                                                                                                                                                       

2 1 4
20 20 20 20 21

1 1

sin cos
2 2

a a
  

  
 

 
+ − + 
 

                                                                                    (75) 

1 2 2 1 4
11 11 10 11 20 20 21

10 1 10 1 10 1 10

cos sin cos
4 2 2

f
a a

a a a a

   
    

  

     
 = − + − +     

     
                                                                    

2 1 20 4 20
20 20 21

1 10 1 10

cos sin
2 2

a a

a a

  
  

 

 
+ − − 
 

                                                                                     (76) 

IJRDO - Journal of Applied Science                               ISSN: 2455-6653

Volume-5 | Issue-8 | August,2019 12



22
1 3 1 10 1 3 101 4

21 20 20 11 21 20 20 21

2 2 2 2

sin cos cos sin
2 2 2

a a
a a a

     
    

   

    
 = − + + − + − −    

    

              (77)                    

( ) ( )2
4 81 21 31 1 2

21 20 20 11 10 11

2 20 2 20 10 1 10 2 20

cos sin cos
2 4 2 2

f
a

a a a a a

    
    

   

   −− 
 = − − + + − + − +   

   

                                  

2
1 10 1 3 10 2 1 20 4 204 2 1

20 20 21 20 20 20 20 21

1 10 1 10 2 20 2 20 1 10 1 10

cos sin sin cos cos sin
2 2 2 2 2

a a a a
a

a a a a a a

       
      

     

 
+ − + − − − − 

  

                                                                                                                                                     (78) 

4. Results and discussion  
    To study behavior of the main system numerically the (Rung-Kutta method) of the nonlinear 

system, given by Eqs (3)and  (4) at basic without absorber, the Primary resonance case ( 1 1 = ) 

is obtained as shown in figures (2)-(7).these solutions are obtained at selected values 

( 1 =1, 1 1 2 1,   = = )and ( ) ( )2 1 3 1 2,   = + =  . 

 

 

 

 

 

 

 
                      Figure2 Response of the system without absorber at basic case 
  

 

                          

 

 

 
                           
                            Figure3 Response of the system at resonance case ( 1 1 2  = = ) 

 

 

 

               

 
          Figure4 Response of the system with absorber in resonance case ( 1 1 2  = = ) 
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                   Figure5 Response of the system at resonance case ( 2 1 3 1 2,   = + = ) 

 

 

 
 

 

  

 

            Figure6 Response of the system with absorber in resonance case ( 2 1 3 1 2,   = + = ) 

 

  

 

 

 

 

 

 

 Figure7 Comparison between Responses of the system under effect of absorber in resonance 

cases 

 

Fig. (2) Show that study of amplitude on the main system in the basic case without 

absorber of the selection of values as 

( 1 0.8f = , 2 0.4f = , 1 2 3 40.08, 0.8, 0.164, 12   = = = = , 5 60.003, 12, 0.3  = = = ,

1 2.1869 = , 2 33, 0.5 =  = , 1 1 = ),the amplitude in the system in the basic without absorber 

Show that effect of passive control where the  stability is reached (approximately 0.2) Fig. (3) 

We study in this figure the amplitude in the system at the response case. First, at (we study 

Trivial and internal response case ( 1 1 1 2,   = = )), then we find that in this case the amplitude 

at maximum reached (up to approximately 2), Fig. (4) Show the effect of passive control at the 

response case at ( 1 1 1 2,   = = ) we find absorber able to reduce and control vibration 

significantly until amplitude reached (up to approximately 0.1). Fig. (5) We study in this figure 

the amplitude in the system at the response case. Second, at (we study combined and internal 

response case ( 2 1 3 1 2,   = + = )), then we find that in this case the amplitude at maximum 

reached (up to approximately 0.8), Fig. (6) Show the effect of passive control at the response 

case at ( 2 1 3 1 2,   = + = ) we find absorber able to reduce and control vibration significantly 

until amplitude reached (up to approximately 0.3). Fig. (7) A comparison between the effect of 
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the absorber on the two resonance states, and the effect of the first case is greater than the 

second. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

  

 

 

 

 
          

 

               

 

 

 

 

 

 

 

 

 

 

   Figure8 Effect of different parameters on the amplitude of the system at the basic case without           

control  

IJRDO - Journal of Applied Science                               ISSN: 2455-6653

Volume-5 | Issue-8 | August,2019 15



Fig.8 show effect of different parameter on the main system without absorber .can see amplitude 

increasing as 1 2 1, ,f f   is increased .Also when increasing the values, 1 2 3, ,    and 3 are 

decreasing as shown. 

 

5. Theoretical frequency and force response curve 
The frequency equation is represented graphically by using the numerical methods. The 

frequency response equation is nonlinear algebraic equation, which are solved numerically by 

using Newton Raphson method .frequency response equation (21) and (21) is nonlinear algebraic 

equation, the results are shown in figure (9) for the steady state amplitudes 1a against parameter 

1 and .frequency response equation (51) and (51) is nonlinear algebraic equation, the results are 

shown in figure (10) for the steady state amplitudes 1a against parameter 1 and
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          Fig.9 Stability of the practical case (in the first resonance case), 2a ≠0 on steady state 

amplitude 1a against 1  

 

Fig.9 show effect of parameter  on the system at  the steady-state  amplitude 1a decreased when 

3 4 1, ,    increasing and amplitude value increased when 1 1 5 6, , , ,f     , Also when 5 6, 
 

and 2  increasing curve is bending to left, and when 1 4,   and   increasing curve is bending 

to right and jump to up when 1f  increasing, we find in(d) the small increase ratio we maximized 

overlap to show the increase in curves . In the curve (a) shows the relation 1a  and 1 it shows 

that the sable in the right branch and unstable in the left branch, the period of stability and 

unstability changes with the study of parameters as is shown 
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                 Fig.10 Stability of the practical case (in the second resonance case), 2a ≠0 on 

steady state amplitude 1a against 1  
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Fig.10 show effect of parameter on system at the steady-state amplitude 1a decreased when 

3 4 1, ,    increasing and amplitude value increased when 2 1 5 6, , , ,f     also when 

2 3,f  increasing curve is bending to up and when 2 3 5 6, , ,     and  increasing curve is 

bending to left also bending to right when increasing 1 4,   . By studying the effect of parameters 

we found periods of stabilization zone increasing by increasing 2 1 5 6, , ,    , as it is decreasing 

by an increase  . In the curve (a) shows the relation 1a  and 1  it shows that the sable in the up 

branch on the curved and unstable in the bottom branch, the period of stability and unstability 

changes with the study of parameters as is shown 

 

 

 

 

 

 

 

 

                         

 

   

                          Fig.11 comparison between analytic and approximate solution 

7. Conclusions 
 

studying the vibration numerically on the system with and without control .To study the 

stability of the system obtained numerical solution is investigated using both phase plane 

methods and frequency response equation in conjunction with study of resonance case, both 

frequency response equation and results based on the present investigation the above study the 

following conclusions are shown: 

 

1- The study of resonance cases numerically we conclude that the worst cases primary, combined 

and internal ( ) ( ) ( )1 1 2 1 3 1 2, ,    =  = + =  on the system with absorber and without and 

comparison of the absorber effect on both cases. 

 

2- The behavior of amplitude on the worst case with control is more stable and control vibration 

is almost nonexistent than system without control, where the effect of absorber reduce the 

amplitude from (2 nearly) to (0.1 nearly) in first case ( ) ( )1 1 1 2,   = = , and reduce the 

amplitude from (0.8 nearly) to (0.3 nearly) in the second case ( ) ( )2 1 3 1 2,   = + =  

 

3- The steady state amplitude in the first case of the main system is monotonic increasing 

function 1 1 5 6, , , ,f     be on steady state amplitude 1a against 1 ,in the second case monotonic 

increasing function 2 1 5 6, , , ,f     ,on steady state amplitude 1a  against 1  . 
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4- The steady state amplitude in the first case of the main system is monotonic decreasing 

function 3 4 1, ,   on steady state amplitude 1a  against 1 , in the second case monotonic 

decreasing function 3 4 1, ,   on steady state amplitude 1a against 1  . 

 

5- The relation 1a  and 1 it shows that the sable in the right branch and un-stable in the 

left branch, the period of stability and un-stability changes with the study of parameters and 

relation 1a  and 1  in the second case it shows that the sable in the up branch on the curved and 

unstable in the bottom branch, the period of stability and unstability changes with the study of 

parameters. And the effect of the first case is greater than the second 
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